Прямоугольный треугольник с гипотенузой 25 см и проведенной к ней высотой равной 12 см вращается вокруг гипотенузы. Найдите площадь поверхности тела, полученного при вращении.
Решение: АВ=25 см, СН=12 см
Sтела=Sбок.кон(1) + Sбок.кон(2)
h2=ac*bc (высота в прямоугольном треугольнике)
CH2=AH*HB. Пусть AH=x, тогда НВ=25-x.
x(25-x)=122;
x2-25x+144=0;
АН=16 см, НВ=9 см Из ΔАНС по теореме Пифагора АС2=АН2+СН2
АС=20см-(образующая 1)
Sбок.кон(1)=πrl=π*12*20=240π (cм2 )
Из ΔВНС СВ2=СН2+НВ2
CB=15 (см).- (образующая 2).
Sбок.кон(2)=π*12*15=180π (см2).
Sтела=240π +180π=420π (см2)
ответ: 420π см2
Задача 3
Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается вокруг большего основания. Найдите площадь поверхности тела вращения.
АС=5 см, НК=10см, СК=13 см.
ОК=НК-АС=5 см; l=13 см
Из ΔСОК по теореме Пифагора СО2=СК2-ОК2;
СО=r =12 см;
Sбок.кон=πrl=π*12*13=156π (см2);
Sцил.=2πrh+πr2=2π*12*5+144π=264π (см2);
Sтела= Sбок.кон.+Sцил.= 156π +264π=
=420π (см2);
ответ: 420π см2
Задача 4
Прямоугольная трапеция с основаниями 5 см и
10см и большей боковой стороной равной 13 см вращается
Вокруг меньшего основания. Найдите площадь поверхности
тела вращения. Прямоугольная трапеция с основаниями
5 см и 10 см и большей боковой стороной равной 13 см
вращается вокруг меньшего основания. Найдите площадь
Поверхности тела вращения.
ВС=5 см, АD=10 см,АВ=13 см
Sтела= Sбок.кон.+Sцил(1основание)
Sтела= πrl+2πrh+πr2; АК=АD-ВС=5 (см);
Из ΔАКВ - прямоугольного по теореме Пифагора
КВ2=АВ2-АК2;
КВ=12см – r
AB=l – образующая
h=AD=10 см
Sтела=π*12*13 + 2π*12*10+144π=540π (см2).
ответ: 540π см2
Задача 5.
Равнобокая трапеция с основаниями 4 см и 10 см и
высотой 4 см вращали вокруг большего основания. Найдите
площадь поверхности тела вращения.
АВ=4см, DC=10 см, ВН=4 см
Sтела=2 Sбок.кон.+Sбок.цил.
Sбок.кон=πrl
HC=10-2/2=3.
Из ΔВНС по теореме Пифагора СВ2=СН2+НВ2;
CВ=5 см.-l (образующая).
BH=r=4 cм;
Sбок.кон=π*4*5=20π (см2)
h=HH1=10 – (3+3)=4 см. Sбок.цил.=2πrh=2*4*4*π=32π (см2)
Sтела=40π+32π=72π (см2).
ответ: 72π см2.
Задача 6
Параллелограмм со стороной 3 см и 6 см , острым углом А= 60° вращается вокруг оси, проходящей через вершину острого угла, параллельно высоте параллелограмма. Найти объем полученного тела вращения.
Ивые организмы – обитали почвы В почве живут различные живые организмы – бактерии, микроскопические грибы, мелкие животные. Жизнь в почве связана с отсутствием света, трудностями передвижения, большой влажностью или недостатком воды, большим количеством отмирающих корней растений и растительных остатков на ее поверхности. У живущих в почве живых организмов имеются различные при к почвенной среде. У крота, например, передние ноги короткие и обращены не вниз, как у наземных зверьков, а в стороны: широкие кисти повернуты назад. Пальцы с крепкими острыми когтями соединены кожистой перепонкой. Такими ногами крот легко разрыхляет почву и делает в ней норы. Глаза у крота недоразвиты и скрыты шерстью. Ими он отличает лишь свет от тьмы. У насекомого медведки передние ноги, как у крота, копательные, а глаза развиты хуже, чем у майского жука. Кроты и медведки постоянно живут в почве. Они могут уходить из слоев, в которых создаются неблагоприятные условия жизни, в другие слои почвы. В засуху и к зиме они перебираются в более глубокие слои. В отличие от них суслики, сурки, барсуки, кролики кормятся на поверхности почвы, а в норах, которые они делают в почве, размножаются, от опасности и непогоды. У растений развились при в том числе и корневых систем, у сухости или влажности почвы. На почвах с недостатком влаги растения образуют мощные корни, достигающие подземных вод. У верблюжьей колючки, растущей в пустынях, корни уходят на глубину до 20 м. У растений, произрастающих в сильно увлажненных местах, корни располагаются близко к поверхности почвы, так как в более глубоких слоях, где вода вытесняет весь воздух, корням растений не хватает воздуха. В почве постоянно обитает множество беспозвоночных животных – муравьи, многоножки, черви, клещи, жуки личинки жуков и мух, слизни и др. Все они по-своему при к жизни в почвенной среде и играют важную роль в процессах почвообразования. Среди них наибольшую массу составляют дождевые (земляные) черви. Общая масса дождевых червей Земли в 10 раз больше массы всего человечества!
Задача 2
Прямоугольный треугольник с гипотенузой 25 см и проведенной к ней высотой равной 12 см вращается вокруг гипотенузы. Найдите площадь поверхности тела, полученного при вращении.
Решение: АВ=25 см, СН=12 см
Sтела=Sбок.кон(1) + Sбок.кон(2)
h2=ac*bc (высота в прямоугольном треугольнике)
CH2=AH*HB. Пусть AH=x, тогда НВ=25-x.
x(25-x)=122;
x2-25x+144=0;
АН=16 см, НВ=9 см Из ΔАНС по теореме Пифагора АС2=АН2+СН2
АС=20см-(образующая 1)
Sбок.кон(1)=πrl=π*12*20=240π (cм2 )
Из ΔВНС СВ2=СН2+НВ2
CB=15 (см).- (образующая 2).
Sбок.кон(2)=π*12*15=180π (см2).
Sтела=240π +180π=420π (см2)
ответ: 420π см2
Задача 3
Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается вокруг большего основания. Найдите площадь поверхности тела вращения.
АС=5 см, НК=10см, СК=13 см.
ОК=НК-АС=5 см; l=13 см
Из ΔСОК по теореме Пифагора СО2=СК2-ОК2;
СО=r =12 см;
Sбок.кон=πrl=π*12*13=156π (см2);
Sцил.=2πrh+πr2=2π*12*5+144π=264π (см2);
Sтела= Sбок.кон.+Sцил.= 156π +264π=
=420π (см2);
ответ: 420π см2
Задача 4
Прямоугольная трапеция с основаниями 5 см и
10см и большей боковой стороной равной 13 см вращается
Вокруг меньшего основания. Найдите площадь поверхности
тела вращения. Прямоугольная трапеция с основаниями
5 см и 10 см и большей боковой стороной равной 13 см
вращается вокруг меньшего основания. Найдите площадь
Поверхности тела вращения.
ВС=5 см, АD=10 см,АВ=13 см
Sтела= Sбок.кон.+Sцил(1основание)
Sтела= πrl+2πrh+πr2; АК=АD-ВС=5 (см);
Из ΔАКВ - прямоугольного по теореме Пифагора
КВ2=АВ2-АК2;
КВ=12см – r
AB=l – образующая
h=AD=10 см
Sтела=π*12*13 + 2π*12*10+144π=540π (см2).
ответ: 540π см2
Задача 5.
Равнобокая трапеция с основаниями 4 см и 10 см и
высотой 4 см вращали вокруг большего основания. Найдите
площадь поверхности тела вращения.
АВ=4см, DC=10 см, ВН=4 см
Sтела=2 Sбок.кон.+Sбок.цил.
Sбок.кон=πrl
HC=10-2/2=3.
Из ΔВНС по теореме Пифагора СВ2=СН2+НВ2;
CВ=5 см.-l (образующая).
BH=r=4 cм;
Sбок.кон=π*4*5=20π (см2)
h=HH1=10 – (3+3)=4 см. Sбок.цил.=2πrh=2*4*4*π=32π (см2)
Sтела=40π+32π=72π (см2).
ответ: 72π см2.
Задача 6
Параллелограмм со стороной 3 см и 6 см , острым углом А= 60° вращается вокруг оси, проходящей через вершину острого угла, параллельно высоте параллелограмма. Найти объем полученного тела вращения.
Vт=Vук – Vк; Vук=1/3П h(R2+R12+RR1); Vк=1/3ПR2h; угол D=A, угол СDC1=60°, ∆CC1D – равносторонний, СС1=6см, Rк=3см, h