Высоты треугольника пересекаются в одной точке, следовательно, высота СС1 проходит через точку О.
1) Треугольники ВСС1 и ВАА1 прямоугольные с общим углом В, но сумма острых углов в этих треугольниках составляет 90град., следовательно, Углы ВСС1 и ВАА1 равны 90град. - /В, т.е. они равны, тогда и /ВСО = /ВАО.
2) /ВСО=28град., /С1ВС = 90-28 = 62град., тогда и /АВС=62град.
/АВВ1=44град., /ВАВ1=90-44=46град., тогда и /ВАС=46град.
Сумма углов треугольника равна 180град. т.е. /АСВ=180-(62+46)=72град.
ответ: /А=46град., /В=62град, /С=72град.
Продлим а2а3 за а3 до пересечения с а4а5 (с его продолжением за точку а4), и проведем а2а6, продлим его за точку а6 до пересечения с тем же а4а5 (с его продолжением за точку а5).
Смотрим на полученный треугольник :))) Это - прямоугольний треугольник (прямой угол в вершине а2), один угол 60 градусов (это угол между продолжениями а1а2 и а4а5), прилежащий к нему катет 2*а (а - сторона шестиугольника, половина этого катета - сторона шестиугольника а2а3). а5а5 в этом треугольнике - медиана к гипотенузе, а а2О - биссектриса прямого угла. Гипотенуза равна 4*а, а второй катет 2*а*корень(3);
Нам задано практически всё, что надо, для того чтобы вычислить площадь треугольника а5а2О. Обозначим за х = а5О,
Тогда из свойства биссектрисы
(2*a + x)/(2*a - x) = корень(3), откуда находим х,
х = 2*а*(корень(3) - 1)/(корень(3) + 1);
Высота треугольника а2а5О
h = 2*a*корень(3)/2;
Откуда искомая площадь
S = (1/2)*(2*а)^2*(корень(3)/2)*(корень(3) - 1)/(корень(3) + 1) =
= a^2*(2*корень(3) - 3)/4;
я не буду вычислять, что получится, если подставить а = корень из 2^3+3, похоже, тут ошибка в условии, впрочем, дерзайте :)))