Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°
Решение.
1) Проведем луч АХ, не лежащий на прямой АВ, и на нем от точки А отложим последовательно 5 равных отрезков АА1, А1А2, А2А3, А3А4, А4А5 т. е. столько
равных отрезков, на сколько равных частей нужно разделить данный отрезок А В.
2) Проведем прямую А5В и построим прямые, проходящие через точки А4, А3, А2, А1 и параллельные прямой А5В.
3) Эти прямые пересекают отрезок АВ в точках, которые по теореме Фалеса делят отрезок АВ на 5 равных частей.
д
Объяснение:
Дано: отрезок АВ.
Разделить отрезок на 5 равных частей.