ответ:
дана прямая а и точка м, не лежащая на ней.
проводим дугу с центром в точке м (черная), произвольного радиуса, большего расстояния от точки м до прямой.
получили две точки пересечения дуги и прямой а. обозначим их а и в.
теперь построим две окружности (красных), с центрами в данных точках, произвольного одинакового радиуса (большего половины отрезка ав).
точки пересечения этих окружностей назовем к и н.
проводим прямую кн.
кн - искомый перпендикуляр к прямой а.
доказательство:
если точка равноудалена от концов отрезка, значит она лежит на серединном перпендикуляре к отрезку.
ак = кв как равные радиусы, значит к лежит на серединном перпендикуляре к отрезку ав.
ан = нв как равные радиусы, значит н лежит на серединном перпендикуляре к отрезку ав.
кн - серединный перпендикуляр к отрезку ав.
ма = мв как равные радиусы черной окружности, значит и точка м лежит на прямой кн, т.е. перпендикуляр к прямой а проходит через точку м.
ответ: 5 (метров)
Объяснение: Обозначим высоту дома АВ, высоту фонаря МЕ, расстояние между домом и фонарем АМ ( см. рисунок), место, где лежат зерна, обозначим С.
Т.к. и дом, и фонарь перпендикулярны земле, соединив точки В и Е с точкой С, получим прямоугольные треугольники АВС и СЕМ, гипотенузы которых равны (так как голуби летели с равными скоростями и прилетели одновременно к зерну).⇒ ВС=СЕ
Примем АС=х, тогда СМ=17-х.
ВС²=ВА²+АС²
ЕС²=СМ²+ЕМ²
ВА²+АС²=СМ²+ЕМ²
12²+х²=(17-х)²+5², ⇒ 34х=170, х=5 (метров) = расстояние от дома до зерна.
2)Т.к. диагонали перпендикулярны, то углы в пар-ме =90=>это прямоугольник, но трапеция равнобокая => диагонали равны => равны стороны прямоугольника => это квадрат=> сторона квадрата==14.
Сторона квадрата =1/2 диагонали=> диагональ=28
откуда одна часть диагонали =12 а другая=16=>боковая сторона(как гипотенуза)==20