В геометрии есть тождества (формула): sin^2 d+ cos^2 d = 1 1.sin^ d + (24\25)^2 = 1 ; sin^2 d + 576\625 = 1; sin^2 d = 1 - 576\625; sin^2 d = 49\625; sin d = 7\25. 2.Для решения дальше понадобится тождество с тангенсом: tg d = sin d\cos d Синус и косинус нам уже известны, осталось только поделить. tg d= 7\25 :24\25; tg d = 7\24. 3. На рисунке я взяла произвольный угол из двух оставшихся. Разницы нет. Косинус это прилежащяя сторона \ на гипотенузу. Синус это противолежащяя сторона \ на гипотенузу. Выходит что синус равен 12\37.
Проведя перпендикуляр к меньшей стороне у нас получился прямоугольный треугольник гипотенуза которого равна корень из 21 а катеты корень из 15( по условию ) и корень из 6( длина меньшей диагонали которая является катетом треугольника ) Далее: из этого треугольника находим синус меньшего угла из этого треугольника от равен корень из 6 разделить на корень из 21 далее: Площадь находим по формуле a*b* sin( угла заключённого между ними ) таким образом перемножая все величины мы находим площадь равную 15 ответ :15
1.sin^ d + (24\25)^2 = 1 ; sin^2 d + 576\625 = 1; sin^2 d = 1 - 576\625; sin^2 d = 49\625; sin d = 7\25.
2.Для решения дальше понадобится тождество с тангенсом: tg d = sin d\cos d
Синус и косинус нам уже известны, осталось только поделить. tg d= 7\25 :24\25; tg d = 7\24.
3. На рисунке я взяла произвольный угол из двух оставшихся. Разницы нет.
Косинус это прилежащяя сторона \ на гипотенузу. Синус это противолежащяя сторона \ на гипотенузу. Выходит что синус равен 12\37.