В равнобедренном треугольнике угол с градусной мерой в 120 градусов будет являться лежащим напротив основания данного треугольника, а оставшиеся два, равных друг другу угла (т.к. они лежат у основания этого треугольника), будут равны (180-120):2=30 градусов. Значит, высота, опущенная к основанию равнобедренного треугольника, будет являться катетом в равнобедренном треугольнике. Эта высота лежит напротив угла в 30 градусов, т.е. она равна половине гипотенузы прямоугольного треугольника. Сама высота проведена к середине основания, т.к. проведена из тупого угла в равнобедренном треугольнике. Значит, отрезок, соединяющий середины боковой стороны(гипотенузы) и основания, будет проведён из прямого угла в прямоугольном треугольнике к середине его гипотенузы. Значит, этот отрезок является медианой в прямоугольном треугольнике, проведённой из прямого угла. А как мы все знаем, медиана, проведённая из вершины прямого угла к гипотенузе, равна половине этой же гипотенузы. То есть искомый нами отрезок равен высоте, значение которой нам известно. Таким образом, отрезок равен 3-ём см. ответ: 3 см.
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
сори мне надо так мне не хватает сории не удаляйте