Урок геометрии по теме "Построение сечений многогранника" 10-й класс
Абакумова Елена Андриановна, учитель математики
Разделы: Математика
Класс: 10
Цели и задачи урока (слайд 1–2)
Повторим геометрические понятия и утверждения
Закрепление навыков построения сечений на примере пирамиды и параллелепипеда.
Обобщение учебного материала по теме через формирование умения применять приёмы построения сечений в новой ситуации
Отработаем умения построения сечений.
Формирование навыков исследовательской работы; в том числе умения синтезировать и анализировать, обобщать, выделять главное.
Формирование специальных умений и навыков, в том числе навыков использования математического языка.
Развитие технического, логического, образно-пространственного мышления учащихся.
Воспитание культуры графического труда.
Материалы и оборудование:
Рабочая тетрадь.
Интерактивная доска
Компьютер.
Ручка, карандаш, резинка.
Раздаточный материал.
Проектор
«Живая математика»
Педагогические средства для решения поставленных задач:
Тип урока: закрепление знаний.
Для повышения эффективности урока и подачи материала в более доступной динамичной форме, использованы слайдовая презентация
Для закрепление знаний материала применены приемы фронтальной работы со слайдом, задана самостоятельная проблемная работа по построению сечений многогранников, стимулирующая саморазвитие учащихся и мотивирующая учащихся на изучение темы «Сечения многогранников» (задачи ЕГЭ).
Ход урока
1. Организационный момент
2. Проверка домашнего задания
(Фронтально, ответы на доске.)
3. Актуализация прежних знаний (повторение аксиом планиметрии, стереометрии и теорем о существовании плоскости, многогранники и их элементы), методы построения сечений.
(Слайды 3–7)
Назовите номер рисунка, на котором изображено сечение параллелепипеда (слайд 8)
Вспомним, что называем сечением
ответ: 192 см
Объяснение:
ВН - высота равнобедренного треугольника, проведенная к основанию, значит ВН - медиана,
АН = НС = ВН/2 = 15 см
ΔАВН: ∠АНВ = 90°,
по теореме Пифагора
АВ = √(АН² + ВН²) = √(15² + 8²) = √(225 + 64) = √289 = 17 см
Pabc = АВ + АС + ВС = 17 + 30 + 17 = 64 см
__________________________________
Углы при основании равнобедренного треугольника равны, тогда
∠А = ∠С = (180° - ∠В)/2
∠А₁ = ∠С₁ = (180° - ∠В₁)/2
По условию ∠В = ∠В₁, значит и ∠А = ∠А₁, ⇒
ΔАВС ~ ΔА₁В₁С₁ по двум углам.