
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
Объяснение:
1) Рассмотрим ΔВСЕ.
∠С = 90°, ∠ВЕС = 60° по условию,
Тогда ∠ЕВС = 180°-90°-60° = 30°
Но, в прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы. Следовательно,
ВЕ = 2ЕС = 2 * 5 =10.
По теореме Пифагора,
ВЕ² = ЕС² + ВС², откуда
ВС² = ВЕ² - ЕС² = 10² - 5² = 100 - 25 = 75
ВС = √75
2) Рассмотрим ΔАВС
∠С =90°, ∠А =30° по условию
Катет, лежащий против угла в 30° равен половине гипотенузы:
ВС = ½АВ или
АВ = 2ВС = 2*√75
По теореме Пифагора:
АВ² = АС² + ВС², откуда
АС² = АВ² - ВС² = (2√75)² - (√75) = 4*75 - 75 = 3*75 = 225
АС = √225 = 15