Найдите площадь грани куба, если площадь сечения куба плоскостью, которая проходит через ребро основания куба и образует с плоскостью основания угол 30°, равна а^2
Рассмотрим треугольники авс и mnc. они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - cn : cb = cm : ca = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол с - общий для треугольников. у подобных треугольников соответственные углы вас и nmc равны. они являются также соответственными углами при пересечении двух прямых ав и mn секущей ас. используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. значит, ab ii mn.
Т. к проведена высота к стороне параллелограмма, то образуется угол 90 градусов, если рассмотреть треугольник, то он будет равнобедренный (180-(90+45)=45 градусов второй угол), а значит сторона треугольника будет равна 4 см, а сторона параллелограмма будет 8 см (т. к разделена пополам), найдем еще одну сторону параллелограмма, это периметр минус удвоенное произведение известной стороны и все разделить пополам (27,4 - 2*8)/2= 5, 7 см значит стороны параллелограмма 8 см и 5,7 см диагональ соответственно равна его стороне т.е 5,7 см