Точка пересечения высот ВК и РН треугольника ВЕР является центром вписанного в него круга докажите что треугольник ВЕР равносторонний.
Объяснение:
Дано: ВК⊥ЕР, РН⊥ВЕ О- точка пересечения высот, О-центр вписанной окружности.
Доказать: ΔВЕР-равносторонний.
Доказательство.
1)Центр вписанной окружности треугольника - точка пересечения биссектрис треугольника ⇒ВК, РН- биссектрисы.Обозначим ∠ЕВК=∠КВР=х, ∠ЕРН=∠НРВ=у.
Тогда в ΔВОР , ∠ВОР=180-х-у.
В четырехугольнике ЕНОК сумма углов 360°⇒∠НЕК=360-90-90-∠ВОР, ∠НЕК=180-180+х+у, ∠НЕК=х+у.
ΔВЕК-прямоугольный, х+(х+у)=90°, по свойству острых углов, у=90°-2х.
ΔРЕН-прямоугольный, у+(х+у)=90° ,по свойству острых углов. Подставим 90°-2х+(х+90°-2х)=90° ⇒х=30°.
Найдем у=90°-2х⇒у=30°.
Найдем углы ∠ЕВК=∠КВР=х ⇒∠ЕВР=60°
∠ЕРН=∠НРВ=у ⇒∠ЕРВ=60°.
∠НЕК=х+у⇒∠НЕК=60°. ΔВЕР-равносторонний.
S = 1/2*12*8=48 (см кв.)
2) опускаем высоту из вершины с углом 150гр., получается прямоуг. треуг. с углом в 150-90=60 град., 12 - гипотенуза, то т.к. высота лежит напротив угла в 30град, она будет равна половине гипотенузы = 6, Отсюда S= 16*6 = 96.
То же самое, если поменять стороны местами (высота = 16/2 = 8, а S = 12*8 = 96 см.кв.)
3) Аналогично опускаем высоты на большее основание, получаем прямоуг. со сторонами 10, h, 10, h
Основание поделено 5:10:5,
Отсюда высота = 169 - 25(корень) = 12
S треуг. = 2*1/2*5*12 = 60
S прямоуг.= 10*12=120
S трап.= 60 + 120 = 180