АВСДА1В1С1Д1 - правильная призма. Основаниями правильной четырехугольной призмы являются квадраты. Найдем сторону этого квадтара (ребро при основании) АВ = √18 = 3√2 см ВД1 - диагональ призмы. Найдем ВД - диагональ основания ВД = 3√2 * √2 = 6 см Так как диагональ ВД1 наклонена к плоскости основания по углом 45, то треуг. ВВ1Д1 прямоугольный и равнобедренный. Высота призмы ВВ1 = ВД = 6 см. Площадь боковой поверхности цилиндра, описаного около призмы равна произведению длины окружности в основании на высоту цилиндра. Высота цилиндра равна высоте призмы, т.е. 6 см. Диаметром окружности является диагональ основания призмы ВД. S (боковое) = П * 6 * 6 = 36*П см.
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны. ∠АМС=∠ВМС - по условию. ∠ВСМ≠∠АСМ в противном случае дуга АД была бы равной дуге АД, что в свою очередь ведет к равенству дуг СВД и САД. Из этого получим, что СД - диаметр окружности, перпендикулярный хорде. Тогда получим, что АМ=МВ, что противоречит условию задачи. Значит ∠ВСМ=∠САМ. Составим отношение сходственных сторон в подобных треугольниках. АС/СВ=СМ/МВ=АМ/СМ. В два последних отношения подставим известные данные, получим СМ/9=4/СМ, СМ²=36, СМ=6 Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды. АМ*МВ=СМ*МВ
180°-60°=120°