Найдите расстояние от точки на касания плоскости и сферы, до точки касательной плоскости, если радиус сферы равен 4 см, а расстояние от центра сферы до точки на касательной плоскости равно 11 см.
Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре, а все стороны ромба равны. значит можем найти сторону
ромба
4а² = d₁² + d₂²
4а² = 16²+30²=256+900=1156
а² = 289; а = 17 (дм)
7)
Дано: стороны прямоугольника а = 16 см, с = 91 см
Найти: диагональ прямоугольника d - ?
диагональ прямоугольника делит прямоугольник на два прямоугольных треугольника. берем один из них и видим, что диагональ d - это гипотенуза прямоугольного треугольника со сторонами 60 и 91. тогда по теореме Пифагора
d² = а² + с²
d² = 16² + 91² = 3600 + 8281 = 11881
d = 109 (см)
9)
окружность описана вокруг квадрата.
диаметр окружности d = 1.4 (м); радиус r = 0.7(м)
сторона квадрата а = 1 (м)
сторона квадрата и диаметр описанной окружности связаны формулой
Опять треугольники не подобны. Самая большая сторона в треугольнике АВС это АВ=10 см, Самая большая сторона в треугольнике А₁В₁С₁ это А₁В₁=15 см. Их отношения равны А₁В₁:АВ=15:10=1,5 Самая маленькая сторона в треугольнике АВС это ВС=5 см. Самая маленькая сторона треугольнике А₁В₁С₁ это В₁С₁=7,5 см. Их отношения равны В₁С₁:ВС=7,5:5=1,5 Отношения совпадают.
Остаются отношения средних сторон. Средняя сторона в треугольнике АВС это АС=7 см, Средняя сторона в треугольнике А₁В₁С₁ это А₁С₁=9,5 см, Их отношения равны А₁С₁:АС=9,5:7=1,(3571428) Получается, что отношения этих сторон не соответствуют другим отношениям сторон.
Объяснение:
6(2)
Дано: ромб
диагонали ромба d₁ = 16 дм; d₂ = 30 дм
Найти: сторону ромба а - ?
Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре, а все стороны ромба равны. значит можем найти сторону
ромба
4а² = d₁² + d₂²
4а² = 16²+30²=256+900=1156
а² = 289; а = 17 (дм)
7)
Дано: стороны прямоугольника а = 16 см, с = 91 см
Найти: диагональ прямоугольника d - ?
диагональ прямоугольника делит прямоугольник на два прямоугольных треугольника. берем один из них и видим, что диагональ d - это гипотенуза прямоугольного треугольника со сторонами 60 и 91. тогда по теореме Пифагора
d² = а² + с²
d² = 16² + 91² = 3600 + 8281 = 11881
d = 109 (см)
9)
окружность описана вокруг квадрата.
диаметр окружности d = 1.4 (м); радиус r = 0.7(м)
сторона квадрата а = 1 (м)
сторона квадрата и диаметр описанной окружности связаны формулой
r= a/√2
проверяем 0,7 ≈ 1/√2
ответ - можно