В каждом из полученных треугольников два угла равны углам исходного треугольника как соответственные при параллельных. Три полученных треугольника подобны друг другу и исходному.
Обозначим их основания a, b, c.
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sa/Sb =3/12 => a/b =√(1/4) =1/2
Sb/Sc =12/27 => b/c =√(4/9) =2/3
Основание b лежит на основании исходного треугольника, основания a и с отложены на основании исходного треугольника как противоположные стороны параллелограммов. Основание исходного треугольника равно a+b+c.
В каждом из полученных треугольников два угла равны углам исходного треугольника как соответственные при параллельных. Три полученных треугольника подобны друг другу и исходному.
Обозначим их основания a, b, c.
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sa/Sb =3/12 => a/b =√(1/4) =1/2
Sb/Sc =12/27 => b/c =√(4/9) =2/3
Основание b лежит на основании исходного треугольника, основания a и с отложены на основании исходного треугольника как противоположные стороны параллелограммов. Основание исходного треугольника равно a+b+c.
y = -1,75x - 4
Объяснение:
y = kx + b
7x + 4y + 1 = 0
4y = -7x - 1|:4
y = -1,75x - 0,25
Если прямы параллельны, то их угловые коэффициенты равны, тогда
y = -1,75x + b ⇒ b = y + 1,75x = -3 + 1,75 * 4 = -3 + 7 = 4
y = -1,75x + 4