В треугольниках ABC и DEF равны пары сторон AB и DE, BC и EF, а также углы BAC и EDF. При каком дополнительном условии можно утверждать, что треугольники ABC и DEF равны? Выберите все правильные варианты ответа.
∠BAC — острый
∠BAC — прямой
∠BAC — тупой
∠BCA — острый
∠BCA — прямой
∠BCA — тупой
AB>BC
AB
<MOK=NOK=120/2=60°.
Зная сумму углов треугольника, найдем неизвестные углы:
<MKO=<NKO=180-<KMO-<MOK=180-90-60=30°
Катет прямоугольного треугольника, лежащий против угла 30°, равен половине гипотенузы. Значит
ОМ=ON=OK/2=12/2=6 см
По теореме Пифагора найдем неизвестные катеты КМ и KN:
KM=KN=√OK²-OM²=√12²-6²=√108=√36*3=6√3 см