1)Дано : АВСД -параллелограмм уг. В- ? на 36 гр. меньше уг.А Найти: углы А,В,С,Д Решение: Пусть уг. А - это х, а уг. В - это х-36 , тогда Составим уравнение : Уг. А + уг. В=180 гр. (т.к внутренние односторонние в сумме дают 180 гр.) х+х-36=180 2х-36=180 2х=180+36 2х=216 х=216/2 х=108 ( это уг.А) уг. В= 108-36=72 гр. уг. А = уг.С =108 гр. (по свойству противолежащих углов параллелограмма) уг. В=уг. Д = 72 гр. (по свойству противолежащих углов параллелограмма) 2) Дано: АВСД-параллелограмм Вд-диагональ уг. АВД/СВД=1/2 Найти : ВД Решение : уг.В= 1х+2х=90 3х=90 х=90/3 х=30(это угол СВД) из этого следует что ВД=2СД ВД=24см
Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны. Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1. Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные. Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1, a <C1A1H1=<B1. Но <C=<C1 a <B=<B1. Значит <BAH=<B1A1H1, a <CAH=<C1A1H1. Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1. Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1. ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1. Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак). Что и требовалось доказать.
ответ: 27; 75см²
Объяснение: При коэффициенте подобия 3/5 отношение площадей треугольника будет равна:
3а*3h/2:5a*5h/2
4,5аh:12,5аh
4,5:12,5
Примем площадь малого треугольника за 4,5части, а площадь большого треугольника за 12,5 частей.
площадь двух треугольников составляет: 4,5+12,5=17частей.
Находим какая площадь приходится на одну часть: 102/17=6
Находим площадь малого треугольника: 6*4,5=27см²
находим площадь большого треугольника: 6*12,5=75см²
Проверка: 27+75=102см²
102=102