Рисуете рисунок. У меня основание AC. По условию 2d=ac, ac=4r. Чтобы найти r, вам нужно приравнять 2 формулы площади треугольника. S=1/2*h*a S=p*r а-сторона треугольника, р-полупериметр. Значит p*r=1/2*h*a Нам нужно все выразить через что-то одно. В данном случае все легко выражается через r. h=100-4r квадрат и все это под корнем (теорема Пифа). a=4r. p=(ab+ac+bc)/2. У нас это (4r+20)/2. Подставляем
(4r+20)/2 * r = 1/2 * 4r * Можно разделить на 4r и умножить на 2 обе части. Слева останется r+5, а справа Возведя в квадрат обе части, вы получите квадратное уравнение с корнями -5 и 3.
Итак, у нас есть 2 высоты и диагональ. Эти 2 высоты разделили основание на 3 части по 40см , 16 и 40 см. Т.к трапеция р\б, треугольники ,что образованы высотами - равны , след. их стороны равны. средний отрезок равен 16 , т.к 1) у нас получился прямоугольник и напротив данного отрезка лежит меньшее основание , равное 16 см. рассмотрим "правый" треугольник :(если что , у меня диагональ идет с левого нижнего угла к правому верхнему) нам известно 2 стороны его - первая дана в условии - она равна 58 см, вторая = 40 см.Этот треугольник прямоугольный , следовательно высоту мы можем найти по теореме Пифагора = 3364-1600=1764. Корень = 42. Теперь рассмотрим треугольник , гипотенузой которой является наша диагональ. Один катет нам известен - только что его нашли. Второй найти тоже не проблема - 1 отрезок равен 40 см , второй - 16. значит катет равен 56 см . Опять теорема Пифагора = 56*56+42*42= 4900, корень равен 70 см.Вот мы и нашли диагональ
ВН/АВ = синус 60°.
ВН = АВ х √3/2 = 6√3 х √3/2 = 9 сантиметров.
3. Вычисляем площадь треугольника АВС:
АС х ВН/2 = 9 х 8/2 = 36 см^2.
ответ: площадь треугольника АВС равна 36 см^2.