M=4 дм - апофема усечённой пирамиды. Пусть сторона большего основания равна а, тогда сторона меньшего а/3. Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9. Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3. Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒ 5а²+48а-837=0 а1=-93/5 - отрицательное значение не подходит. а2=9. Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм. h²=m²-b²=4²-3²=7 h=√7 дм. ответ: высота усечённой пирамиды равна √7 дм.
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки, на которые высота из прямого угла делит гипотенузу. Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Отсюда h² =12*3=36 h=6 По теореме Пифагора из треугольников, на которые высота разделила исходный треугольник, найти катеты сложности не представляет. Меньший катет равен 3√5, больший - 6√5 Проверка: Квадрат гипотенузы равен (3√5)²+ (6√5)²=225 Гипотенуза равна √225=15, что соответствует условию задачи.
Пусть сторона большего основания равна а, тогда сторона меньшего а/3.
Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9.
Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3.
Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒
5а²+48а-837=0
а1=-93/5 - отрицательное значение не подходит.
а2=9.
Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм.
h²=m²-b²=4²-3²=7
h=√7 дм.
ответ: высота усечённой пирамиды равна √7 дм.