Отрезки касательных, проведенных из одной точки, равны, а центры окружностей лежат на биссектрисе угла ASB. Тогда SK - биссектриса и высота равнобедренного треугольника ASB т.е. SK⊥AB. Аналогично, SН⊥ CD, тогда КН - искомое расстояние между прямыми АВ и CD.
Радиус, проведенный в точку касания, перпендикулярен касательной, значит ∠MBS = ∠ODS = 90°.
Угол при вершине S общий для треугольников MBS и ODS, значит треугольники подобны по двум углам.
SM : SO = MB : OD = 36 : 45 = 4 : 5
SO = SM + MO, а МО = 36 + 45 = 81
SM : (SM + 81) = 4 : 5
5SM = 4SM + 324
SM = 324
ΔSBM: ∠SBM = 90°
cos∠SMB = BM / SM = 36 / 324 = 1/9
ΔMBK: ∠MKB = 90°
KM = MB · cos∠SMB = 36 · 1/9 = 4
∠SOD = ∠SMB так как треугольники подобны.
ΔODH: ∠OHD = 90°
OH = OD · cos∠SOD = 45 · 1/9 = 5
KH = KM + MO - OH
KH = 4 + 36 + 45 - 5 = 80
Окружность, центр которой расположен в первой координатной четверти, касается оси Ox в точке M, пересекает две гиперболы y = и y = (k1, k2 > 0) в точках A и B таких, что прямая AB проходит через начало координат O. Известно, что k1 * k2 = 144. Найдите наименьшую возможную длину отрезка OM.В ответ запишите квадрат длины ОМ.
Объяснение:
Прямая АВ , проходящая через начало координат имеет вид у=кх
Найдем точки пересечения этой прямой и гипербол:
y = и у=кх → = кх , х²= ; x = ( т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* .
y = и у=кх → = кх , х²= ; x = ( т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* .
По свойство касательной и секущей проведенных из одной точки ОМ²=ОА*ОВ. Найдем ОА и ОВ по формулам расстояния между точками : ОА= = ,
ОB= = .
Тогда ОМ²= * = . Т.к ≥2 ,по следствию из неравенства о среднем арифметическом и среднем геометрическом , то принимает наименьшее значение равное 2 , а к1*к2=144, то ОМ²=2*√144=2*12=24.
===========================================
Свойство касательной и секущей проведенных из одной точки : "Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью."
Формула расстояния между точками d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.