Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Угол между хордой и касательной равен половине градусной меры дуги, стягиваемой этой хордой (свойство), то есть половине градусной меры дуги АВ. На дугу АВ опирается центральный угол АОБ, значит дуга АВ = 120°. Значит угол между касательной и хордой в точке касания равен 120°:2 = 60° ответ: искомый угол равен 60°. Или так: В равнобедренном треугольнике АОВ (стороны ОА и ОВ равны - радиусы) углы при основании равны по (180-120):2=30° (сумма углов треугольника = 180°). Касательная в точке касания перпендикулярна радиусу, значит искомый угол равен 90° - 30° = 60°. ответ: 60°
∠АОВ и ∠COD вертикальные,
∠ВОС и ∠AOD вертикальные.
Проведем:
ОЕ - биссектрису ∠АОВ,
OF - биссектрису ∠СOD,
OK - биссектрису ∠BOC,
OM - биссектрису ∠AOD.
Сначала докажем, что биссектрисы смежных углов перпендикулярны.
∠ВОА и ∠ВОС смежные, значит их сумма равна 180°:
∠1 + ∠2 + ∠3 + ∠4 = 180°
Биссектрисы разбили эти углы на пары равных углов:
∠1 = ∠2 и ∠3 = ∠4, значит
2 ·∠2 + 2 ·∠3 = 180°
2(∠2 + ∠3) = 180°
∠2 + ∠3 = 90°, значит
ОЕ⊥ОК.
∠СОВ и ∠COD смежные, значит и их биссектрисы пересекаются под прямым углом:
OF⊥OK.
Углы ЕОК и FOK имеют общую сторону ОК и составляют в сумме 180°, значит они смежные, следовательно стороны ОЕ и OF являются дополнительными лучами, т.е. лежат на одной прямой.
Что и требовалось доказать.