1. 1)Треугольники АСЕ и АВД равны по второму признаку равенства треугольников.
Действительно, у них угол А - общий, АВ=АС по условию, углы АСЕ и АВД раны тоже по условию.
2) Т.к. в равных треугольниках соответственные стороны равны, то АЕ=АД=15 см, АС=АВ=7см, ЕС=ВД=10см
2. Треугольники АВС и А₁В₁С₁ равны по первому признаку равенства треугольников.
В них АВ=А₁В₁ по условию, АС = А₁С₁ по условию, ∠А=∠А₁ по условию.
В равных треугольниках соответственные углы В и В₁ равны.
Теперь рассмотрим треугольники АВК и А₁В₁К₁, они равны тоже по первому признаку, т.к. АВ=А₁В₁ по условию, углы В и В₁ равны по доказанному, а т.к. КС=К₁С₁ по условию и ВС=В₁С₁ по доказанному, то и остатки равных сторон ВК=В₁К₁
3. Треугольники АВС и А₁В₁С₁ равны по первому признаку, у них углы А и А₁ равны по условию, АВ=А₁В₁; АС=А₁С₁ по условию.
Значит, АС -ДС = А₁С₁-Д₁С₁, т.е. АД=А₁Д₁, как остатки равных сторон.
Тогда треугольники АВД и А₁В₁Д₁ равны по первому признаку равенства треугольников, в них АВ=А₁В₁ по условию, АД=А₁Д₁ по доказанному, ∠ А =∠ А₁
равны по условию.
Аналогично показываем, что АВ=ВС. Таким образом три стороны трапеции равны между собой.
Если за О обозначить точку пересечения диагоналей, то из рис.2 видим, что треугольники ВОС и DOA подобны (по трем углам). Причем коэффичиент подобия равен 5/13.
Обозначим за 5х - длинну основания ВС и 13х - длинну основания AD. Найдем, чему равняется KD. KD=(AD-BC)/2=(13x-5x)/2=4x.
По теореме Пифагора в прямоугольном треугольнике KCD: KD²+CK²=CD². CK - это высота трапеции, а CD=BC=5х. Тогда имеем: (4х)²+90²=(5х)² , 8100=9х², 900=х², х=30(см).
Значит ВС=5*30=150(см), а AD=13*30=390(см).
Площадь трапеции равна
S=h*(BC+AD)/2=90*(150+390)/2=90*270=24300(см²)