М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
578fyvhjj
578fyvhjj
14.02.2021 09:58 •  Геометрия

Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A1 и B1, а другая — в точках A2 и B2 соответственно.
Найдите отрезок A1 A2, если он на 1 см меньше отрезка B1 B2,
MA2 = 4 см, A2 B2 = 10 см.

👇
Ответ:
Lera096811hk
Lera096811hk
14.02.2021

Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂,  MA₂ = 4 см, A₂B₂ = 10 см.

Объяснение:

1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость

(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости  α и β  по параллельным прямым А₁А₂ и В₁В₂( свойство).

2) ΔМА₁А₂~ΔMB₁B₂  по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные ,  ∠А₁А₂М =∠В₁В₂М как накрест лежащие при  А₁А₂ || В₁В₂,  А₂В₂-секущая. Поэтому сходственные стороны пропорциональны

А₁А₂ : В₁В₂ = АМА₂ : МВ₂

А₁А₂ : (А₁А₂+1) = 4: ( 10-4)

4(А₁А₂+1)=А₁А₂*6   ⇒ А₁А₂= 2 cм


Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямы
4,6(95 оценок)
Открыть все ответы
Ответ:
Bagila1234
Bagila1234
14.02.2021
Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.

Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
4,4(85 оценок)
Ответ:
Melenocka0606
Melenocka0606
14.02.2021

1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна  h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.

ответ: α = arctg√3 = 60°

2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.

3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.

ответ: искомый угол равен 45°.


1.медианы правильного треугольника авс пересекаются в точке о,ом перпендикулярно (авс) ,ом=√3 ,ав=2√
4,4(30 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ