Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
Дано:
ABCDA₁B₁C₁D₁ - Прямоугольный параллелепипед
∠ABD=60°
CC₁ = 8см
AB = 15см
----------------------------------------------------------------------------
Найти:
V(ABCDA₁B₁C₁D₁) - ?
Сначала мы находим сторону основания AD этого прямоугольника ABCD:
ΔABD - прямоугольный (∠BAD = 90°, и ∠ABD=60°) ⇒ tg∠ABD = AD/AB ⇒
AD = AB × tg∠ABD = 15 см × tg60° = 15 см × √3 = 15√3 см
И теперь мы находим объем прямоугольного параллелепипеда:
V(ABCDA₁B₁C₁D₁) = Sосн × h = S(ABCD) × СС₁ = AB×AD×CC₁ = 15 см × 15√3 см × 8 см = 225√3 см² × 8 см = 1800√3 см³
ответ: V(ABCDA₁B₁C₁D₁) = 1800√3 см³
P.S. Рисунок показан внизу↓