Пусть О - середина отрезка АВ. Опустим перпендикуляры к плоскости из точек А, В и О, соответствующие точки на плоскости обозначим A', B' и O', отрезки АА', ВВ' и ОО' - параллельны.Так как проекция сохраняет отношение длин коллинеарных отрезков, то A'O'/O'B'=АО/ОВ=1, т.е.O' - середина A'B'. Получается, что А'АВВ' - трапеция, где А'А и В'В - основания, а О'О - её средняя линия. Длина средней линии трапеции равна полусумме длин её оснований.
(2,4+7,6):2=5 (см)
ответ: расстояние от середины отрезка АВ до плоскости 5 сантиметров.
Введем систему координат: C(0,0), B(0,a), A(b,0), AC=b, BC=a. Середина гипотенузы имеет координаты D(b/2;a/2), середина BC - E(0,a/2). Середина DE - F(b/4,a/2). Центр окружности лежит на прямой, проходящей через F, и перпендикулярной DE. Так как Рассмотрим радиус окружности, который касается AC. Он перпендикулярен AC, но он будет перпендикулярен и DE, значит, точка касания лежит на прямой, проходящей через F перпедикулярно DE, и находится в точке пересечения этой прямой с AC. Координаты этой точки G(b/4;0), значит, точка касания делит катет в отношении 1:3.
Возможно, решение слишком сложное, но более простое, к сожалению, на ум не приходит.