Одна сторона прямоугольника равна х, х>0, вторая у, у>0. Площадь прямоугольника S = xy = 2 откуда y = 2/x. Рассмотрим функцию:
P(x)=2х+2у=2х+2*2/х=2х+4/х
Найдем производную этой функции, приравняем к нулю, получим критические точки
2-(4/х²)=0, откуда 4-2х²=0
х²≠0, х=±√2
Поскольку отрицательный корень x = -√2 не подходит по смыслу задачи, то берем критическую точку х=√2, разбиваем ею числовую ось и проверяем, какие знаки принимает производная на интервалах (0;√2);(√2;+∞)
(0)___-(√2)+
Производная функции при переходе через точку x = √2 меняет знак с минуса на плюс, поэтому х=√2 - точка минимума функции.
у=2/√2=√2
А наименьший периметр прямоугольника будет равен 4√2, если обе стороны равны √2, т.е. когда прямоугольник превратится в квадрат.
1)Сумма сторон параллелограмма равна 12 см, значит если первую сторону обозначить как а см, то вторая сторона будет равна (12-а) см.
Известно, что а:(12-а)=3:2
2а=3(12-а)
2а=36-3а
5а=36
а=7,2(см)-одна сторона
12-а=12-7,2=4,8(см)-вторая сторона
ответ: 7,2 см и 4,8 см
2)Найдём углы параллелограмма АВСД.
Известно, что угол А=42 град, значит угол С =42 град (как противоположный угол параллелограмма).
Аналогично, Угол В=углу Д(как противоположный угол параллелограмма).
Углы А и В -внутренние односторонние при двух параллельных прямых и секущей, значит угол В=180-угол А
Угол В=угол Д=180-42=138(град)
ответ: 42, 138, 42, 138