М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MarinaDonut648
MarinaDonut648
21.11.2020 01:27 •  Геометрия

1. Измерения прямоугольного параллелепипеда равны 3 см, 2 см и 6 см. Найдите:
1) длину диагонали параллелепипеда;
2) длину диагонали наименьшей грани;
3) площадь наибольшей грани;
4) площадь наименьшей грани;
5) площадь поверхности параллелепипеда.


1. Измерения прямоугольного параллелепипеда равны 3 см, 2 см и 6 см. Найдите:1) длину диагонали пара

👇
Открыть все ответы
Ответ:
kalabukhovalina
kalabukhovalina
21.11.2020

Известно, что прямая пересекает плоскость, если она не принадлежит этой плоскости и не параллельна ей. Следуя приведенному ниже алгоритму, найдем точку пересечения прямой a с плоскостью общего положения α, заданной следами h0α, f0α.

Алгоритм

Через прямую a проводим вс фронтально-проецирующую плоскость γ. На рисунке обозначены её следы h0γ, f0γ.

Строим проекции прямой AB, по которой пересекаются плоскости α и γ. В данной задаче точка B' = h0α ∩ h0γ, A'' = f0α ∩ f0γ. Точки A' и B'' лежат на оси x, их положение определяется по линиям связи.

Прямые a и AB пересекаются в искомой точке K. Её горизонтальная проекция K' = a' ∩ A'B'. Фронтальная проекция K'' лежит на прямой a''.

Точка пересечения прямой и плоскости

Алгоритм решения останется тем же, если пл. α будет задана параллельными, скрещивающимися прямыми, отсеком фигуры или другими возможными .

Видимость прямой a относительно плоскости α. Метод конкурирующих точек

Определение видимости прямой

Отметим на чертеже фронтально-конкурирующие точки A и С (рис. ниже). Будем считать, что точка A принадлежит пл. α, а С лежит на прямой a. Фронтальные проекции A'' и С'' совпадают, но при этом т. A и С удалены от плоскости проекций П2 на разное расстояние.

Найдем горизонтальные проекции A' и C'. Как видно на рисунке, точка C' удалена от плоскости П2 на большее расстояние, чем т. A', принадлежащая пл. α. Следовательно, участок прямой а'', расположенный левее точки K'', будет видимым. Участок a'' правее K'' является невидимым. Отмечаем его штриховой линией.

Отметим на чертеже горизонтально-конкурирующие точки D и E. Будем считать, что точка D принадлежит пл. α, а E лежит на прямой a. Горизонтальные проекции D' и E' совпадают, но при этом т. D и E удалены от плоскости П1 на разное расстояние.

Определим положение фронтальных проекций D'' и E''. Как видно на рисунке, точка D'', находящаяся в пл. α, удалена от плоскости П1 на большее расстояние, чем т. E'', принадлежащая прямой a. Следовательно, участок а', расположенный правее точки K', будет невидимым. Отмечаем его штриховой линией. Участок a' левее K' является видимым.


Найти точку пересечения прямой общего положения с проецирующей прямой
Найти точку пересечения прямой общего положения с проецирующей прямой
4,4(92 оценок)
Ответ:
mishaniy
mishaniy
21.11.2020
В квадрате диагонали перпендикулярны друг другу.
Если есть точка М(х₁ у₁) и прямая Ах + Ву + С =  0, то уравнение перпендикулярной прямой: А(у - у₁) - В(х - х₁) = 0.
Подставляем известные данные: точка А(5;-4) и прямая - диагональ ВД: х - 7у - 8 = 0.
Уравнение диагонали АС: 1*(у - (-4)) - (-7)*(х - 5) = 0.
у + 4 + 7х - 35 = 0,
АС: 7х + у - 31 = 0.
Эта же прямая в виду уравнения с коэффициентом:
у = -7х + 31.

В уравнении типа у = кх + в коэффициент к - это тангенс угла наклона прямой к оси "х".
Стороны квадрата проходят под углом +45° и -45° к диагонали.
Используем формулу тангенса суммы (разности) углов:
tg( \alpha +- \beta )= \frac{tg \alpha +-tg \beta }{1-+tg \alpha *tg \beta }.
Используя к = -7 для АС, находим "к" для сторон АВ и АД:
tg( \alpha +45)= \frac{-7+1}{1-(-7)*1} = \frac{-6}{8} =- \frac{3}{4} .
tg( \alpha -45)= \frac{tg \alpha -tg45}{1+tg \alpha *tg45} = \frac{-7-1}{1+(-7)*1}= \frac{-8}{-6}= \frac{4}{3}.

Теперь переходим к уравнениям сторон.
У параллельных прямых коэффициент к одинаков.
Найдём координаты точки С, симметричной точка А относительно прямой ВД.
Алгоритм решения :
1) Находим прямую (диагональ АС), которая перпендикулярна прямой ВД.
2) Находим точку К пересечения прямых - это будет центр квадрата.
3) Точка К является серединой отрезка АС. Нам известны координаты середины и одного из концов. По формулам координат середины отрезка находим точку С.

1) Уравнение АС найдено.
2) ВД:   х - 7у - 8 = 0             -7х + 49у + 56 = 0
    АС: 7х + у - 31 = 0             7х +      у - 31 = 0
                                               --------------------------
                                                        50у + 25 = 0
                                                            у = -25 / 50 = -1/2.
                                         х = 7у + 8 = 7*(-1/2) + 8 = -3,5 + 8 = 4,5.
Получили координаты точки К(4,5; -0,5).

3) Хс = 2Хк - Ха = 2*4,5 - 5 = 9 - 5 = 4.
     Ус = 2Ук - Уа = 2*(-0,5) - (-4) = -1 + 4 = 3.

Уравнения сторон:
АВ: -4 = (-3/4)*5 + в      в = -4 + (15/4) = (-16/4) + (15/4) = -1/4.
АВ: у = (-3/4)х - (1/4).

СД: 3 = (-3/4)*4 + в       в = 3 + (12/4) = 3 + 3 = 6.
СД: у = (-3/4)х + 6.

АД: -4 = (4/3)*5 + в       в = -4 - (20/3) = (-12/3) - (20/3) = -32/3
АД: у = (4/3)х - (32/3).

ВС: 3 = (4/3)*4 + в        в= 3 - (6/3) = (9 - 16)/3 = -7/3.
ВС: у = (4/3)х - (7/3).
4,8(72 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ