Обозначим буквами вершины треугольника АВС (начиная с нижней левой вершины), а точку пересечения прямой (показан голубым цветом) со стороной АС за К.
Объяснение:
Сначала мы должны опустить высоту ВН в треугольнике АВС, которая также является высотами треугольников АВК и ВКС.
1) Высота в равнобедренном треугольнике является медианой и биссектрисой
следовательно ->
-> АН=НС=(21+11)÷2=16
2) Рассмотрим треугольник ВНК:
НК=НС-КС=16-11=5
По т. Пифагора:
ВН^2=169-25
ВН=12
3)Можно рассмотреть любой из треугольников АВН и ВНС
По т. Пифагора:
х^2=144+256
х^2=400
х=20
ОТВЕТ: х=20
Итак, угол ВОС= 60 градусов.
Угол ВОС - это центральный угол, опирающийся на дугу ВС. Значит градусная мера этой дуги равна 60 градусам.
ответ: градусная мера малой дуги ВС равна 60 градусов.
(Если правильно понял условие задачи, что расстояние от центра до хорды равно 6см, а от центра до точки А равно 8см)