Объяснение:
Геометрическая фигура, образованная тремя пересекающимися прямыми, образующими три внутренних угла, а также всякий предмет, устройство такой формы.
Треугольники бывают по углам:
Если все углы треугольника острые, то треугольник называется остроугольным;
Если один из углов треугольника тупой (больше ), то треугольник называется тупоугольным;
Если один из углов треугольника прямой (равен ), то треугольник называется прямоугольным.
По сторонам:
Треугольник называется равнобедренным, если у него две стороны равны.
Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.
Треугольник, у которого все стороны равны, называется равносторонним или правильным.
Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°.
Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.
Разносторонним или произвольным треугольником называется треугольник, у которого все длины и все углы не равны между собой.
Площадь квадрата равна 8 ед²
Объяснение:
Дано
Окружность
АBCDEF- шестиугольник вписанный
KLMN- квадрат вписанный.
SABCDEF=6√3 ед²
SKLMN=?
Решение
Шестиугольник состоит из 6 равносторонних треугольников.
Найдем площадь одного треугольника.
S∆ABO=SABCDEF/6=6√3/6=√3 eд² площадь одного треугольника.
Из формулы равностороннего треугольника
S=a²√3/4, где а -сторона треугольника.
Найдем сторону треугольника.
а=√(4S/√3)=√(4√3/√3)=2 ед сторона треугольника
а=АО=R=2ед.
КМ диагональ квадрата равна диаметру окружности.
КМ=2*АО=2*2=4 ед. диагональ квадрата.
Из формулы нахождения диагонали квадрата
КМ=КN*√2.
Найдем сторону квадрата.
КN=KM/√2=4/√2=2√2 сторона квадрата.
SKLMN=KN²=(2√2)²=4*2=8 ед² площадь квадрата