Дано: АМ и ВМ - наклонные.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Найти: АМ и ВМ
Пусть ВМ у нас Х см, тогда АМ по условию 2Х см
Т.к. по условию АС и ВС - проекции АМ и ВМ, то МС⊥ плоскости а по определению.
Мы получили два прямоугольных треугольника АМС и ВМС, где наклонные - гипотенузы, а МС - общий катет, который можно найти по теореме Пифагора.
Из Δ АМС катет МС = (2Х)² - АС²
Из Δ ВМС катет МС = Х² - ВС²
Приравняем выражения для одного и того же катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Подставим значения проекций и решим уравнение относительно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- это сторона ВМ
2Х = 4*2 = 8 (см) это сторона АВ
ответ: ВМ = 8 см; АМ = 4 см
Дано: АМ і ВМ - похилі.
ВМ : АВ = 1 : 2
АС = 7 см
ВС = 1 см
Знайти: АМ і ВМ
Рішення:
Нехай ВМ у нас Х см, тоді АМ за умовою 2Х см
Оскільки за умовою АС і ВС - проекції АМ і ВМ, то МС⊥ площині а за визначенням.
Ми отримали два прямокутних трикутника АМС і ВМС, де похилі - гіпотенузи, а МС - спільний катет, який можна знайти за теоремою Піфагора.
З Δ АМС катет МС² = (2Х)² - АС²
З Δ ВМС катет МС² = Х² - ВС²
Приравняем вирази для одного і того ж катета:
4Х² - АС² = Х² - ВС²
3Х² = АС² - ВС²
Підставимо значення проекцій і вирішимо рівняння відносно Х
3Х² = 7² - 1²
3Х² = 49 - 1
Х² = 48 : 3
Х² = 16
Х = 4 (см) --- це сторона ВМ
2Х = 4*2 = 8 (см) це сторона АВ
Відповідь: ВМ = 8 см; АМ = 4 см
ответ:АВ=10.8 см, ВС=10.8 см, АС=6 см
Объяснение:
Дано:
угол А= угол С
АС*1.8=АВ
Р=27.6 см
Найти: АВ, АС, ВС-?
Решение.
1)<А=<С => АВ=ВС-равнобедренный треугольник, следствие теоремы об углах равнобедренного треугольника. ( если в треугольнике 2 угла равны, то такие треугольники равны)
2)Пусть сторона АС х см. Тогда АВ 1.8х см, ВС 1.8х см.х+1.8х+1.8х=27.64.6х=27.6|:4.6х=6Значит АС=х см
3)АВ=ВС=1.8х=1.8*6=10.8
Если все правильно, можно лучший ответ?Надеюсь, что