Вписанный в окружность угол на 36градуса меньше центрального угла опирающегося на ту же дугу . Дайте ответ в градусные меры вписанного и центрального углов если центральный угол острый
Рассмотрим две пересекающиеся в точке M прямые a и b. Через две пересекающиеся прямые можно провести плоскость, назовем её P. Проведем прямую c, которая пересекает прямые a и b в точках A и B соответственно. A принадлежит a -> A принадлежит P B принадлежит b -> B принадлежит P -> прямая c лежит в плоскости P
с - произвольная прямая -> все прямые, которые пересекают a и b и не проходят через M - точку пересечения прямых a и b лежат с этими прямыми в одной плоскости.
Теперь рассмотрим случай, когда прямые проходят через точку пересечения M прямых a и b.
Возьмем произвольную точку N, которая не лежит в плоскости P и проведем прямую через точки N и M.
Прямая NM не принадлежит плоскости P.
Итак, основной вывод.
Прямые, которые пересекают две пересекающиеся прямые и не проходят через их точку пересечения всегда лежат с этими прямыми в одной плоскости. Те прямые, которые проходят через точку пересечения пересекающихся прямых не всегда лежат с ними в одной плоскости.
1) Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Т.е. AB₁ / B₁C = AB / BC = 8/4 = 2/1 Пусть B₁C = x, тогда AB₁ = 2x x + 2x = 9 3x = 9 x = 3 B₁C = 3, AB₁ = 6 AO - биссектриса, т.к. центр вписанной окружности - точка пересечения биссектрис. ΔABB₁: AB / AB₁ = BO / OB₁ = 8/6 = 4/3 2) CO ·OD = AO · OB CO = OD = x x² = 4·25 x² = 100 x = 10 CD = 20 3) ΔBMK подобен ΔDFK по двум углам (углы при вершине К равны как вертикальные, ∠КВМ = ∠KDF как соответственные)⇒ DK / KB = FD / BM = 1/2
Рассмотрим две пересекающиеся в точке M прямые a и b. Через две пересекающиеся прямые можно провести плоскость, назовем её P.
Проведем прямую c, которая пересекает прямые a и b в точках A и B соответственно.
A принадлежит a -> A принадлежит P
B принадлежит b -> B принадлежит P
-> прямая c лежит в плоскости P
с - произвольная прямая -> все прямые, которые пересекают a и b и не проходят через M - точку пересечения прямых a и b лежат с этими прямыми в одной плоскости.
Теперь рассмотрим случай, когда прямые проходят через точку пересечения M прямых a и b.
Возьмем произвольную точку N, которая не лежит в плоскости P и проведем прямую через точки N и M.
Прямая NM не принадлежит плоскости P.
Итак, основной вывод.
Прямые, которые пересекают две пересекающиеся прямые и не проходят через их точку пересечения всегда лежат с этими прямыми в одной плоскости.
Те прямые, которые проходят через точку пересечения пересекающихся прямых не всегда лежат с ними в одной плоскости.