1. т.к OD=FS (по условию), OF=DS (по условию) , а DF - общая, то эти треугольники равны по трём сторонам
№2
AC=CD, FC=CP, угол ACF = углу DCP (как вертикальные), следовательно треугольники равны по двум сторонам и углу между ними. А так как треугольники равны, то и их элементы тоже равны (угол А=37 градусов, а AF=28 см.)
№4
Угол 1= углу 2 (по условию), угол BDC и угол BDA - прямые, то есть равны, сторона BD - общая, следовательно треугольник ABD = треугольнику BDC ( по стороне и 2-м прилежащим к ней углам). Так как треугольники равны, то и элементы равны, следовательно AB=BC. Значит треугольник ABC равнобедренный
Пусть будет трапеция АВСD, BC и AD - основания. Площадь трапеции - это полусумма оснований помноженная на высоту. Высоту не обязательно опускать из вершины. Проведём высоту так, чтобы центр вписанной окружности лежал на ней. Пусть это будет высота НК, О - центр вписанной окружности. Это возможно, если точки Н и К - точки касания окружности с основаниями трапеции (радиус, проведённый в точку касания, перпендикулярен касательной). Средняя линия трапеции - это полусумма оснований, значит, площадь трапеции можно найти как средняя линия помноженная на высоту. У нас есть длина средней линии - 5, и если площадь - 40, значит, высота НК=40\5=8. НК=ОН+ОК=2ОК => ОК=8\2=4 - радиус вписанной окружности.
№1
1. т.к OD=FS (по условию), OF=DS (по условию) , а DF - общая, то эти треугольники равны по трём сторонам
№2
AC=CD, FC=CP, угол ACF = углу DCP (как вертикальные), следовательно треугольники равны по двум сторонам и углу между ними. А так как треугольники равны, то и их элементы тоже равны (угол А=37 градусов, а AF=28 см.)
№4
Угол 1= углу 2 (по условию), угол BDC и угол BDA - прямые, то есть равны, сторона BD - общая, следовательно треугольник ABD = треугольнику BDC ( по стороне и 2-м прилежащим к ней углам). Так как треугольники равны, то и элементы равны, следовательно AB=BC. Значит треугольник ABC равнобедренный