М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
jono1
jono1
09.08.2021 06:30 •  Геометрия

Треугольник авс. угол а=45 градусам, вс=13 см.вd высота проведена к ас, сd= 12. аh высота проведена к вс. найти: площадь авс. высоту аh

👇
Ответ:
zeleninalina20
zeleninalina20
09.08.2021
Высота по т. Пифагора.
ВД^2+ДС^2=ВС^2
ВД^2=ВС^2-ДС^2=169-144=25
ВД=5см высота
уголА=углу АВД=45, отсюда следует что АВД равнобедренный и
АД=АВ=5см. АС=5+12=17см
S АВС=1/2АС*ВД=1/2*17*5=42,5кв.см
4,6(5 оценок)
Открыть все ответы
Ответ:
P=16 см
Угол ABC=120°
Т.к все стороны ромба равны, то
AB=BC=CD=DA=P/4=16/4=4 см
Угол BCD=60°(т.к (360°-120°-120°):2=60° по сумме углов четырёхугольника)
Т.к диагонали ромба являются и биссектрисами, то
Угол ABD= Угол DBC = Угол CDB = Угол BDA = 120°/2=60°
Треугольник BOC= Треугольник COD= Треугольник ODA=Треугольник OBA (по стороне и двум прилежащим к ней углам)
Рассмотрим Треугольник BOC:
Он прямоугольный, т.к диагонали ромба взаимноперпендикулярны
Т.к OC - биссектриса угла BCD, то Угол BCO=60°/2=30°
Катет, лежащий против Угла 30°, равен половине гипотенузы
BO=BC/2=4/2=2 см
Воспользуемся теоремой Пифагора
c²=a²+b²
BC²=BO²+OC²
4²=2²+OC²
OC²=16-4
OC²=12
OC=\sqrt{12} = \sqrt{3*4} = 2 \sqrt{3}
Т.к диагонали ромба точкой пересечения делятся пополам, то
BD=2*BO=2*2=4
CA=2*CO=2*2\sqrt{3}=4 \sqrt{3}
ответ: Диагонали равны 4 см и 4 \sqrt{3} см

Периметр ромба,один из углов которого 120 градусов,равен 16 см.найти диагонали ромба
4,6(10 оценок)
Ответ:
Darina6940
Darina6940
09.08.2021

ЗАДАНИЕ 1

Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.  

Проведем через вершину пирамиды S плоскости, перпендикулярные ребрам двугранных углов пирамиды, то есть плоскости, перпендикулярные сторонам основания пирамиды и, следовательно, перпендикулярные самому основанию.

Тогда у всех этих плоскостей имеются две общие точки: вершина пирамиды S и ее проекция на основание пирамиды точка О. То есть эти плоскости пересекаются по прямой SO, являющейся высотой пирамиды. Линии пересечения этих плоскостей и пирамиды - это высота боковой грани и перпендикуляр из точки О основания высоты пирамиды к стороне основания пирамиды. Этот перпендикуляр - проекция высоты боковой грани на плоскость основания и в силу равенства двугранных углов (дано) одинаков для всех проведенных плоскостей, так как тангенс этих углов равен отношению высоты пирамиды к проекции высоты боковой грани. Итак, точка основания высоты пирамиды в нашем случае равноудалена от сторон основания пирамиды, следовательно, расстояние от этой точки до стороны основания пирамиды является радиусом вписанной в основание пирамиды окружности, что и требовалось доказать.  

ЗАДАНИЕ 2.

Основание правильной пирамиды SABCD - квадрат ABCD со стороной "а". Его площадь равна а². Значит площадь диагонального сечения равна а²/2 (дано). Диагональное сечение правильной пирамиды - равнобедренный треугольник ASC с основанием - диагональю квадрата, равной а√2. Площадь диагонального сечения S=(1/2)*АС*SO (SO - высота пирамиды). Итак, (1/2)*а√2*SO = а²/2. Тогда

SO = (а²/2)/(а√2/2) = a√2/2. В прямоугольном треугольнике SOA катет АО - половина диагонали АС.  АО=a√2/2. Значит треугольник SOA - равнобедренный и <A = 45°. Тогда в равнобедренном треугольнике ASC углы при основании равны по 45°, а угол при вершине равен 90°. Значит стороны AS и SC взаимно перпендикулярны.

AS и SC - противоположные ребра пирамиды. Они перпендикулярны. Что и требовалось доказать.


1докажите, что когда все двугранные углы при ребрах основания равны, то основание ее высоты – центр
4,5(62 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ