Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Сумма смежных углов равна 180°
∠В и внешний ∠ при вершине В - смежные.
=> ∠В = 180° - 120° = 60°
∠А = ∠С, по свойству равнобедренного треугольника.
180° - 60° = 120° - сумма ∠А и ∠С
∠А = ∠С = 120°/2 = 60°.
Вывод:
этот треугольник - равносторонний (∠А = ∠В = ∠С = 60°)
ответ: 60°, 60°, 60°.
Внешний угол треугольника равен сумме двух внутренних углов треугольника несмежных с ним.
=> ∠А + ∠С = 120°
∠А = ∠С, по свойству равнобедренного треугольника.
=> ∠А = ∠С = 120°/2 = 60°
Сумма углов треугольника равна 180°
=> ∠В = 180˚ - (60˚ + 60˚) = 60˚
Вывод:
этот треугольник - равносторонний (∠А = ∠В = ∠С = 60°)
ответ: 60°, 60°, 60°.