Дано:
тр АВС (уг С=90)
АС = 16 см
ВС = 12 см
АВ = 20 см
Найти:
а) косинус меньшего угла
б) сумму квадратов косинусов острых углов
а) по свойству соотношения сторон и углов треугольника, против меньшей стороны лежит меньший угол, а значит меньшим будет угол, лежащий против стороны 12 см, по условию, следовательно, это угол А.
cos A = AC / AB; cos A = 4/5 = 0.8
б) Есть св-во - оно же основное геометрическое тождество, сумма квадратов косинусов острых углов прямоугольного треугольника равна единице, но вы похоже этого ещё не изучали, посему надо найти оставшийся косинус угла В и найти сумму квадратов косинусов вычислением, приступим:
cos B = CB / AB; cos B = 12/20 = 3/5 = 0.6
cos²A +cos²B = 0.8²+0.6²=0.64+0.36=1
Сделай лучшим решением
Объяснение:
Пошаговое объяснение:
Берёшь циркуль, по линейке или тетрадным клеткам отмеряешь 2 см (не забудь, что 1 клетка = 0,5 см). Выбираешь любую точку в тетради, в которую будешь ставить иголку циркуля, — это цент окружности (точка О), отмечаешь его. Ставишь циркуль иголкой в эту точку, рисуешь окружность. Диаметр - это хорда, проходящая через центр окружности. Ведёшь прямую от одной точки контура этой окружности до другой через центр (точку О). Один конец получившегося отрезка называешь В, другой называешь D. Диаметр равен двум радиусам, то есть AC =4 см. Отмеряешь 3,5 см циркулем, ставишь в любую точку контура окружности, проводишь дугу так, чтобы она пересекала контур окружности. В эту точку пересечения ведёшь прямую из той точки, откуда проводил(а) дугу. Один конец получившегося отрезка называешь М, другой конец называешь N