Довжина однієї зі сторін (в) дорівнює 4см, а периметр прямокутника (P) дорівнює 18см. Так як периметр будь-якої фігури дорівнює сумі довжин її сторін, а у прямокутника протилежні сторони завжди рівні, то формула його периметр а виглядатиме таким чином: P = 2 x (a + b), або P = 2a + 2b. З цієї формули випливає, що знайти довжину другої сторони (а) можна за до наступної нескладної операції: а = (P - 2в): 2. Так, в нашому випадку сторона а дорівнюватиме (18- 2 х 4): 2 = 5 см. 2 Тепер, знаючи довжини обох суміжних сторін (a і b), ви легко зможете підставити їх у формулу площі S = ab. В даному випадку площа прямокутника дорівнюватиме 5х4 = 20. Вроді би так. Вибач якщо є помилки
знайдемо середини диагоналей читырехугольника
середина диагоналей aс: x=(-3+(-1))/2=-2; y=(-2+6)/2=2
середина диагоналей bd: x=(2+(-6))/2=-2; y=(1+3)/2=2
середины диагоналей данного читерехугольника сокращаються, значить паралелограмом
по формуле знаем что довжиния сторн читерехугольника abcd
ab=корень(())^2+())^2)=корень(25+9)=корень(34)
bc=-2)^2+(6-1)^2)=корень(9+25)=корень(34)
cd=))^2+(3-6)^2)=корень(25+9)=корень(34)
ad=))^2+())^2)=корень(9+25)=корень(34)
сторони даного паралелограма равен, тому ромбом.
по формулі відстані знайдемо довжини діагоналей чотирикутника abcd
ac=корі))^2+())^2)=корінь(4+64)=корінь(68)
bd=корі-2)^2+(3-1)^2)=корінь(64+4)=корінь(68)
даний чотирикутник(паралелограм) є ромбом і прямокутником, тому він квадрат