Высота боковой грани пирамиды равна корню квадратному из суммы квадратов высоты пирамиды и квадрата половины длины стороны основания или √((10:2)²+12²)=√√169=13 (дм) площадь каждой из боковых граней: 13*10/2=65(дм²) площадь боковой поверхности пирамиды: 130*4=260 (дм²) площадь боковой поверхности пирамиды и основания: 260+(10*10)=360 (дм²) ткани необходимо, чтобы сшить саму палатку и ее основание не считая расхода материалов на швы и обрезки.
360:2=180 (дм²)-составляют 50% от необходимого количества ткани 360+180=540 (дм²)ткани необходимо, чтобы сшить саму палатку и ее основание с учетом швов и обрезков
Задача №3 См. рис. 3. BC || AD, AB и CD — бёдра трапеции. Докажем, что AB=CD.
Если вокруг четырёхугольника можно описать окружность, то сумма противоположных углов равна 180° (необходимое условие). То есть ∠A+∠C=∠B+∠D=180°.
С другой стороны, сумма углов, прилежащих к боковым сторонам трапеции, равна 180° (по теореме о параллельных прямых BC и AD и секущей AB). Следовательно, ∠A+∠B=∠C+∠D=180°.
Сопоставив эти равенства, получим, что ∠A=∠D и ∠B=∠C. Является ли это доказательством, что трапеция равнобедренная? Я не помню, изучают ли в школе эту теорему, поэтому на всякий случай докажу.
Проведём высоты BE и CF (см. рис. 4). Они равны, так как все высоты трапеции равны. Поэтому прямоугольные треугольники ABE и DFC равны (по острому углу и катету). Значит, равны их гипотенузы — AB и CD, что и требовалось доказать.
√((10:2)²+12²)=√√169=13 (дм)
площадь каждой из боковых граней:
13*10/2=65(дм²)
площадь боковой поверхности пирамиды:
130*4=260 (дм²)
площадь боковой поверхности пирамиды и основания:
260+(10*10)=360 (дм²) ткани необходимо, чтобы сшить саму палатку и ее основание не считая расхода материалов на швы и обрезки.
360:2=180 (дм²)-составляют 50% от необходимого количества ткани
360+180=540 (дм²)ткани необходимо, чтобы сшить саму палатку и ее основание с учетом швов и обрезков