1)Пирамида ABCD (D - верхняя вершина, из которой опущена высота в точку О).
Точка О является центром вписанной и описанной окружностей.
Плоский угол DNO - линейный угол двугранного угла (N - середина стороны AC).
Радиус вписанной окружности треугольника оN = DO = 6.
Радиус описанной окружности треугольника OA = оN / sin 30 = 2 * оN = 12.
Апофема пирамиды DN = sqrt (DO^2 + ON^2) = DO * sqrt 2 = 6 * sqrt 2.
Площадь боковой поверхности пирамиды = (AB + BC + AC) / 2 * DN = 3 * AC / 2 * DN = 3 * AN * DN = 3 * (оN * sqrt 3) * DN = 3 * 6 * sqrt 3 * 6 * sqrt 2 = 108 * sqrt 6.
Объём пирамиды = 1/3 * (BN * AC / 2) * DO = 1/3 * ((OB + ON) * AN) * DO = 1/3 * ((3*6) * (6 * sqrt 3)) * 6 = 216 * sqrt 3.
Любые две из трех прямых, соединяющих середины отрезков AB и CD; AC и BD; AD и BC могут быть:
а) параллельны одной из этих прямых.
Через две параллельные прямые можно провести плоскость, притом только одну.
б) пересекаться:
Через две пересекающиеся прямые можно провести плоскость, притом только одну.
В рисунке приложения даны некоторые из получающихся пар параллельных и пересекающихся прямых:
а) pd и mn как средние линии треугольников АСD и BCD параллельны AD; kp и no параллельны основанию АС треугольников АDC и АВС.
б) km и mn, mn и no пересекаются.