Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
Поскольку треугольник BCD - равносторонний. BE -высота. Она же медиана и биссектриса. Вариант № 1 Рассмотрим треугольники BCE и ECD BE=CD (т.к. треугольник равносторонний) ВЕ=ED (т.к. CE - медиана) угол В = углу D - (углы при основании в равнобедренном треугольнике) Значит треугольники равны по двум сторонам и углу между ними. Вариант №2 Рассмотрим треугольники BCE и ECD BE=CD (т.к. треугольник равносторонний) ВЕ=ED (т.к. CE - медиана) СЕ - общая сторона Значит треугольники равны по трем сторонам. Вариант №3 Рассмотрим треугольники BCE и ECD BE=CD (т.к. треугольник равносторонний) угол В = углу D - (углы при основании в равнобедренном треугольнике) Угол BCE и угол ECD (т.к. СЕ-биссектриса) Значит треугольники равны по стороне и двум прилежащим углам.
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D
По теореме Пифагора DC₁²=6²+8²=100
DC₁=10
РК- средняя линия треугольника DCC₁
PK=5
PT|| AD и PT || ВС
РТ=4
AD⊥CD ⇒ РТ⊥СD
AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК
РТ⊥ РК
Аналогично, МТ ⊥МК
Сечение представляет собой прямоугольник
Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18