Для параллелограмма есть формула b²-а²=D*d*cos α где b и а- большая и меньшая стороны, D и d - большая и меньшая диагонали, α - угол между диагоналями. Подставим известные величины: 36-16= D*d*cos 45º D*d*cos45º =20 Одна из формул площади параллелограмма S=Dd* sinα:2 Синус и косинус 45º равны⇒ D*d*sin45º =20 S =Dd* sin45º:2=20:2=10(ед. площади) --------- Данная выше формула выводится из т.косинусов. ------- Обозначим для удобства большую сторону ВС параллелограмма b, меньшую СD- а, угол COD-α Рассмотрим треугольник ВОС Угол ВОС тупой и его косинус отрицательный. По т.косинусов из ∆ ВОС ВС²==ВО²+СО² -2ВО*СО*(-cosα) b²= (d/2)²+(D/2)² + 2(d/2)*D/2*cos α Из треугольника СОD по т.косинусов а²=(d/2)²+(D/2)² - 2(d/2)*D/2*cos α Вычтем из первого уравнения второе: b²-а²= (d/2)²+(D/2)² + 2(d/2)*D/2*cos α - (d/2)² - (D/2)² + 2(d/2)*D/2*cos α b²-а²= 4(d/2)*D/2*cosα=4Dd/4)*cos α b²-а²=D*d*cos α
Решение Пусть биссектрисы внешних углов при вершинах B и C параллелограмма ABCD пересекаются в точке P, биссектрисы внешних углов при вершинах C и D — в точке Q, внешних углов при вершинах A и D — в точке R, внешних углов при вершинах A и B — в точке S.
Поскольку биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны, то PQRS — прямоугольник.
Пусть M — середина BC. Тогда PM — медиана прямоугольного треугольника BPC, поэтому PM = MC. Значит,
< MPC = < PCM = < PCK,
где K — точка на продолжении стороны DC за точку C. Следовательно , PM || CD. Аналогично докажем, что если N — середина AD, то RN = ND и RN || CD. Кроме того , MN || CD и MN = CD. Следовательно, точки M и N лежат на диагонали PR прямоугольника PQRS и
Там короче сделать надо и все
Объяснение:
просто в инет зайди