1)35 2)1440 3)144 4)180-144=36
Объяснение:
Формула для вычисления числа диагоналей многоугольника: d = n(n-3)/2, где d – число диагоналей, n – число сторон многоугольника.
Сумма внутренних углов выпуклого многоугольника равна произведению 180° и количеству сторон без двух. s = 2d(n - 2), где s — это сумма углов, 2d — два прямых угла (то есть 2 · 90 = 180°), а n — количество сторон.
Угол вычислить можно просто поделив сумму на количество углов.
Внешний Угол можно вычислить просто отняв тот угол от 180.
В Δ CDE известно, что CD = 3√2 cм, DE = 4 см, S = 6 см². Найти угол D, сторону CE i радиус окружности, описанной около треугольника.
Объяснение:
1) S( треуг.) = 1/2*а*в*sin α,
6 = 1/2*4*3√2*sin α ,
sin α= 12/ (12√2)=√2/2 ⇒ α= 45°.
2) По т. косинусов "Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними" :
СЕ²=CD²+DE²-2*CD*DE*cos(∠D),
CE²=(3√2)²+4²-2*(3√2)*4*cos45°,
CE²=18+16-2*12√2 *(√2/2) ,
CE²=34-24 , CE=√10 cм.
3)По т. синусов СЕ/sin(∠D)=2R ⇒R=√10/(2*(√2/2)) ,R=3 см
1) 5; 2) 50
Объяснение:
1. В трапеции ABCD основания BC = 6, AD = 14. Пусть O - точка пересечения диагоналей. Тогда углы BOC и AOD равны, как вертикальные, CBD и BDA равны как внутренние накрест лежащие углы при BC // AD, по определению трапеции, и секущей BD. Треугольники BOC и DOA подобны по двум углам. Из их подобия, BC / AD = BO / OD. Пусть OD = x, тогда BO = x - 2, по условию. 6 / 14 = x - 2 / x. 6x = 14x - 28, по основному свойству пропорции. OD = x = 3,5; BO = x - 2 = 1,5. BD = BO + OD = 1,5 + 3,5 = 5.
2. В прямоугольном треугольнике ABC угол C - прямой; к гипотенузе AB проведена высота CH. В треугольниках ACH и ABC угол A - общий, углы ACB и AHC равны 90°. Треугольники ACH и ABC подобны по двум углам. По условию, AC/CB = 3/4. Пусть AC = 3x, CB = 4x, тогда AB = 5x, по теореме Пифагора. Из подобия, AH/AC = AC/AB = 3/5. Пусть HB = y, тогда AH = y - 14, AB = 2y - 14 = 5x, x = 0,4y - 2,8; 3x = 1,2y - 8,4 = AC. AH/AC = (y-14)/(1,2y - 8,4) = 3/5; по осн. свойству пропорции, 5y - 70 = 3,6y - 25,2; 1,4y = 44,8; y = 448/14 = 32. AB = 2y - 14 = 50.