Так как сумма углов любого треугольника равна 180 градусов, то внешний угол будет равен 236°-180°=56°. Это так. Значит ВНУТРЕННИЙ угол треугольника, смежный с внешним, будет равен 180°-56°=124°. Это ТУПОЙ угол, и значит это угол при ВЕРШИНЕ равнобедренного треугольника. Тогда углы при основании равны (180°-124°):2=28°. ответ: углы треугольника равны 124°,28° и 28°.
Или так: Данный нам внешний угол - смежный с тупым внутренним(124°), то есть с углом при вершине, противоположной основанию. Внешний угол равен сумме двух внутренних, не смежных с ним (равные углы при основании). Значит углы при основании равны 56°:2=28°.
Я тебе напишу общий план решения прости что не все но главное понять идею а там все просто будет. для начала конечно же рисунок получится примерно так как на картинке зеленым цветом я провел радиусы по условию они равны. Из рисунка видно что стороны треугольников равенство которых необходимо доказать являются основаниями равнобедренных треугольников у которых боковые стороны равны. также видно что и углы при вершине этих треугольников равны. следовательно все эти равнобедренные треугольники равны между собой из чего следует что все стороны рассматриваемых нами треугольников равны. А это в свою очередь означает что два интересующих нас треугольника (как выяснилось они правильные) равны. Что и требовалось доказать.
в том треугольнике,где Х 1 угол=90°,2 угол 31°,а вот угол Х = 59°