Всего вершин n, из каждой проведено (n-3) диагонали ( т.к. диагональ не проводится в саму вершину и две соседние - поэтому отнимаем 3) а т.к. каждая диагональ посчитана дважды -то делим на два.
Если ∠В=150°, то ∠А=180°-∠В=180°-150°=30° диагонали АС и BD-пересекаются под прямым углом и делят ромб пополам, то есть АС и BD-биссектрисы, значит О-центр круга и ∠ВАО=30°/2=15° проведем радиус в точку касания Н. (радиус проведенный в точку касания перпендикулярен самой касательной) Значит ОН также является высотой ΔАВО проведенной из прямого угла АОВ, следовательно ΔАНО подобен ΔОНВ, ∠BAO=∠HOB=15° (ЕСЛИ ТЕКСТ НИЖЕ ПОЛНОСТЬЮ НЕ ОТОБРАЖАЕТСЯ, ТО ПОСМОТРИ СКРИН)
Площадь любого многоугольника в который можно вписать в окружность находится по формуле:
Пусть СР=х, тогда АР=4-х. Пусть СК=у, тогда ВК=6-у. Из прямоугольных треугольников квадрат катета ВР можно найти двумя сразу их объединим: ВС²-СР²=АВ²-АР², 6²-х²=5²-(4-х)², 36-х²=25-16+8х-х², х=27/8. Аналогично из прямоугольных тр-ков АСК и АВК: АС²-СК²=АВ²-ВК², 4²-у²=5²-(6-у)², 16-у²=25-36+12у-у², у=27/12. В тр-ке АВС cosC=(АС²+ВС²-АВ²)/(2АС·ВС)=(16+36-25)/(2·4·6)=27/48. В тр-ке CPK по теореме косинусов РК²=СР²+СК²-2СР·СК·cosC. РК²=(27/8)²+(27/12)²-2·27·27·27/(8·12·48)=(729/64)+(729/144)-(27³/48²)=(729/64)+(324/64)-(19683/2304)=(1053/64)-(19683/2304)=2025/256. РК=45/16=2.8125 - это ответ.