ответ: Р=162 см
Объяснение:
Пусть дана прямоугольная трапеция ABCD. у которой ВС и AD - основания, угол А =углу В=90 градусов. О- центр вписанной в трапецию окружности, точка М - точка касания окружности стороны AD и точка К - точка касания окружности стороны ВС. АМ=20 см, MD=25 см, тогда ОМ=ОК=r=20см и АВ=40 см. DM=DK=25 см как отрезки касательных,проведенных из одной точки. Угол С+ угол D трапеции=180 градусов, как внутренние накрест лежащие углы, DO и CO - биссектрисы соответствующих углов, то угол CDO+DCO=90градусов, следовательно угол COD=90 градусов, т.е. треугольник COD - прямоугольный, у которого ОК - высота, проведенная к гипотенузе, OK^2=DK*CK, CK=400/25=16 см. Значит периметр трапеции равен 20+25+25+16+16+20+40=162 см
Проведём из центров окружностей О₁ и О₂ радиусы к точкам касания А и В. По свойству касательной О₁А = 8см и О₂В = 18см перпендикулярны АВ.
Межцентровое рассояние О₁О₂ = 8 + 18 = 26см
Из точки А проведём прямую АС параллельно О₁О₂. Получим параллелограмм АО₁О₂С, в котором О₂С = О₁А = 8см, а АС =О₁О₂ = 26см и тр-к АВС с прямым углом В
В этом тр-ке гипотенуза АС = О₁О₂ = 26см, катет ВС = О₂В - О₂С = 18 - 8 = 10см. АВ является катетом.
АВ² = АС² - ВС² = 26² - 10² = 676 - 100 = 576
АВ = 24
ответ: АВ = 24см