Проведём построения и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и BOH, они прямоугольные, стороны AO и OB равны как радиусы окружностей, OH — общая, следовательно, треугольники AOH и HOB равны. Откуда AH=BH= дробь, числитель — AB, знаменатель — 2 =10. Аналогично, равны треугольники COK и KOD, откуда CK=KD. Рассмотрим треугольник BOH, найдём OB по теореме Пифагора:
OB= корень из { OH в степени 2 плюс BH в степени 2 }= корень из { 24 в степени 2 плюс 10 в степени 2 }=26.
Рассмотрим треугольник OKD, он прямоугольный, из теоремы Пифагора найдём KD:
KD= корень из { OD в степени 2 минус OK в степени 2 }= корень из { OB в степени 2 минус OK в степени 2 }= корень из { 26 в степени 2 минус 10 в степени 2 }=24.
Таким образом, CD=2KD=2 умножить на 24=48.
ответ: 48.
При пересечении двух параллельных прямых a и b секущей c,мы получим данные углы:
1. Вертикальные углы.На фото это углы 1 и 3.Углы 5 и 7, 6 и 8 тоже вертикальные.Вертикальные углы всегда равны.
2. Смежные.На фото углы 1 и 2.Их сумма равна 180 градусов.
3. Накрест лежащие. Углы 3 и 5 а также 1 и 7, 2 и 8, 4 и 6.Накрест лежащие углы равны.
4.Соответственные.Углы 2 и 6 ,а также 3 и 7, 1 и 5, 4 и 8. Соответственные углы равны.
5. Односторонние.Углы 4 и 7 . Сумма односторонних углов равна 180 градусов
И того мы нашли:вертикальные,смежные,накрест лежащие(есть внутренние,есть внешние),соответственные,и односторонние углы.