Задача
В основе прямой призмы лежит равнобедренная трапеция с острым углом 60 и боковой стороной 4 см. Диагонали трапеции являются биссектрисами острых углов. Диагональ призмы наклонена к плоскости основания под углом 45. Найти объем призмы.
Объяснение:
АВСD-трапеция,∠А=∠D=60°, АС-биссектриса ∠А, DВ-биссектриса ∠D, АВ=СD=4 см, ∠ВDВ₁=45°.
Т.к. DВ-биссектриса ∠D, то ∠АDВ=30°,
ΔАВD, ∠А=60° , ∠АDВ=30° ⇒ ∠АВD=90°. Поэтому ΔАВD-прямоугольный : tg60°=ВD/ВА или √3=ВD/4 или ВD=4√3 см
cos60°=ВА/АD или 0,5=4/АD , АD=8 см.
АD║ВС,АD-секущая ⇒ ∠АDВ=∠DВС=30° как накрест лежащие.Поэтому ΔDВС- равнобедренный и СВ=СD=4 см.
ΔВDВ₁-прямоугольный и равнобедренный( ∠ВDВ₁=45° ⇒∠ВВ₁D=45°), поэтому ВВ₁=ВD=4√3 см.
V=P(осн)*h.
V=(4+4+4+8)*4√3 =80√3 ( см³)
а) (5;7) принадлежит данной прямой.
б) (0;1) не принадлежит данной прямой.
в) (0;-1) не принадлежит данной прямой.
г) (-5;-7) не принадлежит данной прямой.
Объяснение:
Подставим в уравнение прямой -3x+2y+1=0 координаты точек. Если равенство будет верным, то точка принадлежит прямой.
а)
-3*5+2*7+1=0
-15+14+1=0 - верное равенство. Значит (5;7) принадлежит данной прямой.
б)
-3*0+2*1+1=0
0+2+1≠0
Равенство не выполняется. Значит (0;1) не принадлежит данной прямой.
в) (0;-1)
-3*0+2*(-1)+1=0
-2+1≠0
Значит (0;-1) не принадлежит данной прямой.
г) (-5;-7)
-3*(-5)+2*(-7)+1=0
15-14+1=0
2≠0
Значит (-5;-7) не принадлежит данной прямой.
Из формул площади треугольников
10h=12*8
Высота, опущенная на гипотенузу h=9,6
По теореме Пифагора расстояние от точки М до гипотенузы = кор из (784+92,16) = 29,6см