Центральный угол всегда в два раза больше вписанного, опирающегося на туже дугу. Поэтому: вписанный угол - х, центральный: 2х = х + 38 => х = 38 ответ 38
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
А). Радиус ОА проходит через середину хорды ВС, значит он перпендикулярен этой хорде (свойство). Радиус ОВ в точку касания касательной ВМ перпендикулярен этой касательной. Значит <AOB=<CBM, как углы с соответственно перпендикулярными сторонами. Градусная мера дуги АВ равна градусной мере центрального угла АОВ (а значит и <CBM), а угол МВА равен половине градусной меры дуги АВ (свойство угла между хордой и касательной). Следовательно, угол МВА равен половине угла МВС, а значит ВА - биссектриса угла МВС. Что и требовалось доказать.
б). Если точка С , принадлежащая прямой АС, равноудалена от прямых АМ и АВ, следовательно эта прямая является биссектрисой угла, образованного этими прямыми. То есть <MAC=<CAB. <МАВ равен половине градусной меры дуги АСВ по свойству угла между касательной (МА) и хордой (АВ). По этому же свойству <MAC равен половине градусной меры дуги АС. Но <MAC равен половине <МАВ. Следовательно, точка С делит дугу АСВ пополам, что и требовалось доказать.
Поэтому:
вписанный угол - х,
центральный: 2х = х + 38 => х = 38
ответ 38