вектор ас имеет проекции
ас х = (4 - 0) = 4; ас у = (3 - 3) = 0
ас (4; 0)
вектор bс имеет проекции
bс х = (4 - 4) = 0; bс у = (3 - 0) = 3
bс (0; 3)
найдём скалярное произведение векторов ас и bс
ас · bс = (4 · 0 + 0 · 3) = 0
следовательно векторы ас и вс перпендикулярны.
угол асв - прямой и опирается на диаметр аb
Найдём диаметр ав
IabI = √(0 + 4)² + (3 + 0)² = 5
Радиус окружности равен половине диаметра R = 2,5.
Центр окружности O расположен посредине между точками а и b
Найдём координаты точки О
xО = (0 + 4)/2 = 2; уО = (3 + 0)/2 = 1,5
Запишем уравнение окружности (х - хО)² + (у - уО)² =R²
(х - 2)² + (у - 1,5)² = 2,5²
По условию секущая плоскость параллельна плоскости КМТ.
Точки А и В лежат в плоскости грани МРТ и являются серединами сторон МР и ТР треугольника МТР.
Следваоетльно, прямая АВ параллельна МТ.
Из т.В проведем прямую ВС параллельно КТ.
ВС - средняя линия ∆ КТР.
С- середина КР, АС - средняя линия ∆ МКР и параллельна МК.
Две пересекающиеся прямые АВ и МС плоскости АВС параллельны двум пересекающимся прямым МТ и ТК плоскости МКТ. Это признак параллельности плоскостей, следовательно, АВС - искомое сечение.
cosА=4/9=8/18
АС/АВ=8/18
8/АВ=8/18
АВ=18