ответ:
основание пирамиды – равнобедренный прямоугольный треугольник авс, угол с=90°, ас=вс=6 см. высота пирамиды - третье из смежных попарно перпендикулярных ребер=8 см.
площадь полной поверхности – сумма площади основания и площадей боковых граней.
s осн=ас•bc: 2=18 см²
грани амс=вмс по равенству катетов.
s ∆ amc=s ∆ bmc=6•8: 2=24
s amb=mh•ab: 2
ab=ac: sin45°=6√2
ch высота и медиана ∆ асв, сн=ав: 2=3√2
высота mh большей боковой грани s=√(ch*+mh*)=√(18+64)=√82
s∆amb=6√2•√82=6√164=12√41
s полн=18+2•24+12√41=66+12√41
объяснение:
Пирамида правильная, значит в основании правильный треугольник, боковые грани равные равнобедренные треугольники, высота проецируется в центр основания.
Пусть Н - середина ВС. Тогда SH медиана и высота равнобедренного треугольника SBC. SH - апофема пирамиды. SH = 12 см.
АН - медиана и высота равностороннего треугольника АВС.
АН⊥ВС, SH⊥ВС, ⇒ ∠SHA = 60° - линейный угол двугранного угла при основании.
ΔSOH: ∠SOH = 90°, cos60° = OH / SH,
OH = SH · cos60° = 12 · 1/2 = 6 см
ОН - радиус окружности, вписанной в правильный треугольник АВС:
OH = BC√3/6,
BC = 6OH / √3 = 36/√3 = 12√3 см
Sбок = 1/2 Pосн · SH = 1/2 · 3 · BC · SH = 1/2 · 3 · 12√3 · 12 = 216√3 см²