Радиус основания цилиндра равен 1, высота 20, площадь сечения, параллельного оси, равна 20 кв.ед. на каком расстоянии от оси находится плоскость сечения?
сечение, параллельное оси представляет собой прямоугольник. тогда сторона этого прямоугольника, лежащая на основании цилиндра будет равна 20/20=1 в углы сечения проводим из центра основания цилиндра линии (они равны радиусу) - получаем равносторонний треугольник со сторонами, равными 1 с вершиной, совпадающей с центром основания цилиндра. из этой вершины проводим высоту для этого треугольника. получае два одинаковых прямоугольных треугольника со сторонами с=1, b=0,5 по теореме Пифагора c^2=a^2+b^2 тогда а = корень(c^2-b^2) = корень (1-0,25) - это и есть расстояние
Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники. В треугольнике ВА1С1 сторона А1С1 = 2 (дано). Сторона ВА1 находится из треугольника АА1В по Пифагору: √(АА1²+АВ²) = √(1+4) = √5. Сторона ВС1=ВА1, так как боковые грани - равные прямоугольники. Итак, треугольник ВА1С1 равнобедренный с боковыми сторонами равными √5 и основанием, равным 2. Нам надо найти расстояние от точки А1 до отрезка ВС1, то есть перпендикуляр А1Н - высоту, опущенную на боковую сторону треугольника. Найдем площадь треугольника по формуле: S=[b*√(a²-(b²/4)]:2, где а - боковая сторона (√5), а b - основание треугольника (2). У нас S = [2*√(5-(4/4)]:2 =2. Но эта же площадь равна (1/2)*ВС1*А1Н, откуда А1Н = S/[(1/2)*ВС1] = 2/(√5/2) = 4/√5 или (4√5)/5. ответ: искомое расстояние равно (4√5)/5 ≈ 1,79.
1. расстояние от точки B до прямой A1F1 это длина перпендикуляра ВР к прямой A1F1, По теореме о трех перпендикулярах его проекция В1Р перпендикулярна к прямой A1F1. Из треугольника А1В1Р надем В1Р: угол В1А1Р равен 60°, т к внутренний угол А1 правильного шестиугольника равен 120°, А1В1 =2, тогда В1Р=В1А1*sin60°=2*√3/2=√3. Из прямоугольного треугольника ВВ1Р найдем гипотенузу ВР: ВР=√(ВВ1^2+B1P^2)=√(3+4)=√7. 2. ОН - расстояние от плоскости сечения до центра, т к площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра, равна 72, а высота цилиндра 3, то АВ=72:3=24, АН=12, ОА=R=13, ОН=√(OA^2-AH^2)=√(169-144)=√25=5
сечение, параллельное оси представляет собой прямоугольник.
тогда сторона этого прямоугольника, лежащая на основании цилиндра будет равна 20/20=1
в углы сечения проводим из центра основания цилиндра линии (они равны радиусу) - получаем равносторонний треугольник со сторонами, равными 1 с вершиной, совпадающей с центром основания цилиндра. из этой вершины проводим высоту для этого треугольника. получае два одинаковых прямоугольных треугольника со сторонами
с=1, b=0,5
по теореме Пифагора
c^2=a^2+b^2
тогда а = корень(c^2-b^2) = корень (1-0,25) - это и есть расстояние