Против. угла в 30° лежит катет равен половине гипотенузы. а там уже можно с теоремы пифагора найти. в которой сказано, что квадрат гипотенузы равен сумме квадратов катетов.
Эта задача на много проще, чем кажется. Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a, то стороны исходного треугольника будут такие (a + r, b + r, 35) стороны меньшего треугольника (a, r, 15) стороны большего (r, b, 20) и все эти три треугольника подобны между собой. отсюда a/r = 15/20 = 3/4; то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5) То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4. То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20) Исходный треугольник имеет стороны 21, 28, 35, его площадь 294; длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
Центр описанной окружности лежит в точке пересечения серединных перпендикуляров, восстановленных к сторонам треугольника. Рассмотрим сторону, к которой проведена медиана. В середине этой стороны восстановим серединный перпендикуляр, на котором должен лежать центр окружности. Но медиана тоже проходит через середину этой стороны, и центр опис. окружности лежит на ней. Значит, серединный перпендикуляр и медиана совпадают, ⇒медиана перпендикулярна к этой стороне, ⇒т.е. медиана является и высотой⇒значит, треугольник равнобедренный.