М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
makssssimfrank
makssssimfrank
27.01.2021 10:48 •  Геометрия

Ребро куба abcda1b1c1d1 дорівнює a. знайти відстань між прямими a1c і dd1. ребро куба abcda1b1c1d1 равна a. найдите расстояние между прямыми a1c и dd1.

👇
Ответ:

ответ:    а√2/2

Объяснение:

Прямые А₁С и DD₁ скрещивающиеся, так как DD₁ лежит в плоскости (АА₁D₁), прямая А₁С пересекает эту плоскость в точке А₁, не лежащей на прямой DD₁.

Расстояние между скрещивающимися прямыми - это расстояние между одной прямой и плоскостью, содержащей другую прямую.

Прямая А₁С лежит в плоскости диагонального сечения АА₁С₁С.

DD₁ ║ AA₁ как противоположные стороны квадрата, АА₁ лежит в плоскости (АА₁С₁), значит DD₁ ║ (AA₁C₁) по признаку параллельности прямой и плоскости.

Расстояние между прямой и плоскостью, которой эта прямая параллельна, - это расстояние от любой точки прямой до плоскости, т.е. длина перпендикуляра, проведенного из любой точки прямой к плоскости.

АА₁ ⊥ (АВС), ⇒ АА₁ ⊥ BD,

АС ⊥ BD как диагонали квадрата, тогда

BD ⊥ (AA₁C₁), т.е. DО - искомое расстояние.

BD = a√2 как диагональ квадрата,

ВО = 1/2 BD = a√2/2.


Ребро куба abcda1b1c1d1 дорівнює a. знайти відстань між прямими a1c і dd1. ребро куба abcda1b1c1d1 р
4,4(89 оценок)
Открыть все ответы
Ответ:
simpleam
simpleam
27.01.2021
Сечение конуса - ΔАВС с основанием АС=6√3 - хорда.
равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3. 
tg30°=OM:AM. 

OM= \frac{1}{ \sqrt{3} } *3 \sqrt{3} , OM=3

cos30^{0} = \frac{AM}{OA}, \frac{ \sqrt{3} }{2} = \frac{OA}{3 \sqrt{3} } &#10;&#10;OA=4,5&#10;&#10;

по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3

V= \frac{1}{3}* \pi * R^{2}*H, V= \frac{1}{3} * \pi * 4,5^{2} *3&#10;&#10;V=20,25 \pi &#10; &#10;
ответ: Vк=20,25π

2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α 
MO_|_(MABCD), МО - высота пирамиды.
прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA
MO=d*tgα/2

Vпир=(1/3)*Sосн*H
Sосн=a², a- сторона основания пирамиды
диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС²
АВ=АС=а
d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2
S=(d/√2)²=d²/2
Vпир=(1/3)*(d²/2)*(d*tgα/2)
Vпир=(d³ *tgα)/12

Решить (с рисунком) 1)через вершину конуса проведена плоскость пересекающая окружность основания по
4,8(29 оценок)
Ответ:
reginochka33
reginochka33
27.01.2021
P = 2*(a+b) = 30
a+b = 15
---
d = √(a²+b²) = 14
√(a²+b²) = 14
a²+b² = 14²
a = 15-b
(15-b)² + b² = 14²
225 - 30b + b² + b² = 196
2b² - 30² + 29 = 0
b₁ = (30 - √(30² - 4*2*29))/4 = 15/2 - √668/4 = 15/2 - √167/2
b₂ = (30 + √(30² - 4*2*29))/4 = 15/2 + √668/4 = 15/2 + √167/2
a₁ = 15 - b₁ = 15 - 15/2 + √167/2 = 15/2 + √167/2
a₂ = 15 - b₂ = 15 - 15/2 - √167/2 = 15/2 - √167/2
Решение одно, просто а и в переставлены местами
S = a*b = (15/2 + √167/2)*(15/2 - √167/2) = 1/4*(15 + √167)*(15 - √167) = 1/4*(15² - 167) = 1/4*(225 - 167) = 1/4*58 = 29/2
4,4(4 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ